

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Physics (WPH16) Paper 01 Practical Skills in Physics II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022 Question Paper Log Number P71882A Publications Code WPH16_01_2210_MS All the material in this publication is copyright © Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. '<u>resonance</u>'

1.2 Bold lower case will be used for emphasis e.g. '**and**' when two pieces of information are needed for 1 mark.

1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".

1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.

2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.

2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in ePen.

2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.

2.5 The mark scheme will indicate if no unit error is to be applied by means of [no ue].

3. Significant figures

3.1 Use of too many significant figures in the theory questions will not be prevent a mark being awarded if the answer given rounds to the answer in the MS.

3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.

3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.

3.4 The use of g = 10 m s⁻² or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will mean that one mark will not be awarded (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹

3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

4.1 Bald (i.e. no working shown) correct answers may score full marks.

4.2 Some working is expected for full marks to be scored in a 'show that' question or an extended calculation question.

4.3 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working. If the question is worth 3 marks then only 2 marks will be available.

4.4 use of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.

4.5 The mark scheme will show a correctly worked answer for illustration only.

5. Quality of Written Expression

5.1 Questions that asses the ability to show a coherent and logically structured answer are marked with an asterisk.

5.2 Marks are awarded for indicative content and for how the answer is structured.

5.3 Linkage between ideas, and fully-sustained reasoning is expected.

6. Graphs

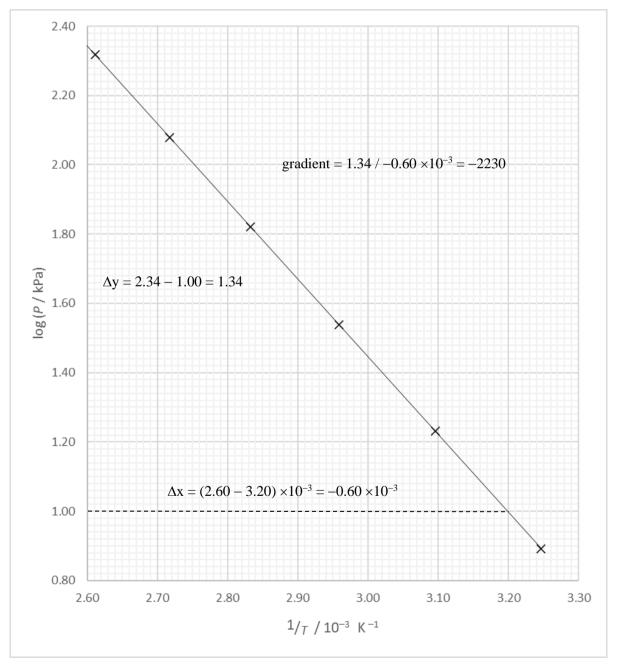
6.1 A mark given for axes requires both axes to be labelled with quantities and units, and drawn the correct way round.

6.2 Sometimes a separate mark will be given for units or for each axis if the units are complex. This will be indicated on the mark scheme.

6.3 A mark given for choosing a scale requires that the chosen scale allows all points to be plotted, spreads plotted points over more than half of each axis and is not an awkward scale e.g. multiples of 3, 7 etc.

6.4 Points should be plotted to within half a small square.

6.5 Check the two points furthest from the best line.


6.6 For a line mark there must be a thin continuous line which is the best fit line for the candidate's results.

Question Number	Answer		Mark
1(a)	Any PAIR from:		
	There could be a short circuit (across the power supply)	(1)	
	Use insulated wire	(1)	
	Or		
	There is a risk of electrocution (from coil A) [Accept electric shock]	(1)	
	Use a low p.d.	(1)	
	Or		
	There is a risk of the wire overheating (if current is too high)	(1)	
	Use a low p.d.		
	Or Use a (limiting) resistor	(1)	2
1(b)	Resolution of Vernier calipers is higher (than the metre ruler)		
	Or Resolution of Vernier calipers is 0.1 mm and resolution of metre rule is 1 mm	(1)	
	Use of half resolution to calculate %U Or U in Vernier calipers and ruler	(1)	
	Valid comparison of %U Or U	(1)	2
			3
	MP3 dependent on MP1 or MP2 [Accept converse]		
	Example of calculation		
	% U for Vernier calipers = $0.005/2 \times 100 = 0.25\%$		
	%U for metre rule = $0.05/2 \times 100 = 2.5\%$		
1(c)	Measure the amplitude of the trace in divisions		
	Or Measure the number of divisions between maximum and minimum and divide		
	by two	(1)	
	Multiply by 100 mV (per division)	(1)	
	Repeat (the amplitude measurement) and calculate a mean	(1)	3
1(d)	Any TWO from		
	Inconsistent significant figures Or decimal places (for <i>E</i>)	(1)	
	Values of <i>r</i> not given to correct number of decimal places	(1)	
	Units of <i>E</i> are incorrect	(1)	
	No repeats are shown Or		
	Or Not enough readings shown	(1)	2

Question Number	Answer		Mark
2(a)	Any PAIR from:	(1)	
	$\ln V = \ln V_0 - bt$	(1)	2
	Is in the form $y = c + mx$ and the gradient is $-b$ which is constant		
	Or		
	$\ln V = -bt + \ln V_0$		
	Is in the form $y = mx + c$ and the gradient is $-b$ which is constant		
	MP2 dependent on MP1, allow reference to straight line		
2(b)	Open the tap and start recording time (simultaneously)	(1)	
	Record volumes at successive time intervals		
	Or Record the time taken to fall to specific volumes	(1)	
	Read to the bottom of the meniscus	(1)	
		(-)	
	Any ONE from:		
	Ensure transparent tube is vertical	(1)	
	Use a stopwatch Or laptimer to measure t	(1)	
	Keep stopwatch close to the tube	(1)	
	Refill to same initial volume and repeat to take a mean	(1)	
	Record many measurements of V and t	(1)	
	Open the tap to same position each time	(1)	4
2(c)	Any PAIR from		
	It may be difficult to measure V and t simultaneously	(1)	
	which will affect <u>random</u> error	(1)	
	Or		
	There is liquid below the scale	(1)	
	which will introduce systematic error	(1)	
	Or		
	Air may be trapped in the tap	(1)	
	which will affect <u>random</u> error	(1)	2
	MP2 dependent on MP1		
	Total for question 2		8

Question Number	Answer		Mark
3(a)(i)	Values of log <i>P</i> correct to 2 d.p.	(1)	
	Values of $\frac{1}{r}$ correct to 5 d.p.		
	Or		
	Values of $\frac{1}{T}$ correct to 2 d.p. if written in standard form	(1)	
	Axes labelled: y as log (P / kPa) and x as $\frac{1}{T}$ / K ⁻¹	(1)	
	Most appropriate scales chosen	(1)	
	Values plotted accurately	(1)	
	Best fit line drawn	(1)	6
3 (a)(ii)	Calculation of gradient using large triangle shown	(1)	
	Gradient = (-) 2.2×10^3	(1)	
	Gradient given to 2 or 3 s.f. and negative	(1)	3
	Example of calculation		
	gradient = $(2.34 - 1.00) / (2.60 - 3.20) \times 10^{-3} = 0.34 / -0.60 \times 10^{-3}$		
	= -2230		
3 (a)(iii)	Use of gradient = $(-)\frac{X}{2.30k}$	(1)	
		(1)	
	Correct value of X [e.c.f. (a)(ii)] X given to 2 or 3 s.f.	(1)	3
	Example of calculation		
	$\overline{X} = \text{gradient} \times (-2.30k) = -2230 \times (-2.30 \times 1.38 \times 10^{-23} \text{ J K}^{-1})$		
	$= 7.08 \times 10^{-20} $ (J)		
3(b)	Value of $\frac{1}{\tau}$ interpolated from graph	(1)	
	Correct <i>T</i> calculated	(1)	
	Conversion of T to °C, given to 2 or 3 s.f.	(1)	3
	Example of calculation		
	$(\text{Log } P = \log (100) = 2)$		
	$\frac{1}{T} = 2.75 \times 10^{-3} \text{ K}^{-1}$		
	$T = 1 / 2.75 \times 10^{-3} = 364 \text{ K}$		
	boiling point = $364 - 273 = 91$ (°C)		
	Total for question 3		15

P / kPa	<i>T /</i> K	$\frac{1}{T}$ / K ⁻¹	$\log (P / kPa)$
7.8	308	0.00325	0.89
17.0	323	0.00310	1.23
34.6	338	0.00296	1.54
66.1	353	0.00283	1.82
120.1	368	0.00272	2.08
208.1	383	0.00261	2.32

Question Number	Answer		Mark
4(a)(i)	Either		
	Repeat at different orientations (along the wire) and calculate a mean	(1)	
	To reduce the effect of <u>random</u> errors	(1)	
	Or		
	Check and correct for zero error (on micrometer screw gauge)	(1)	
	To eliminate <u>systematic</u> error	(1)	2
	MP2 dependent on MP1		
	[Allow MP2 if MP1 partially correct]		
4(a)(ii)	Mean $d = 0.31$ (mm)	(1)	
	Calculation using half range shown Or		
	Calculation of furthest from mean shown	(1)	
	Uncertainty in $d = 0.02$ (mm) Decimal places consistent with the calculated mean	(1)	3
	MP3 dependent on MP2		
	Example of calculation		
	Mean $d = (0.31 + 0.32 + 0.31 + 0.33 + 0.30) / 5 = 1.57 / 5$		
	= 0.314 = 0.31 (mm)		
	Uncertainty = $(0.33 - 0.30) / 2 = 0.03 / 2 = 0.015 = 0.02$ (mm)		
4(b)(i)	Use of $A = \pi d^2/4$ and $R = V/I$	(1)	
	Use of $R = \rho L/A$	(1)	
	$\rho = 4.6 \times 10^{-7} (\Omega \text{ m})$	(1)	3
	Example of calculation		
	$A = \pi \times (0.22 \times 10^{-3} \text{ m})^2 / 4 = 3.80 \times 10^{-8} \text{ m}^2$		
	$R = V/I = 4.990 \text{ V} / 0.4570 \text{ A} = 10.9 \Omega$		
	$\rho = RA / L = 10.9 \ \Omega \times 3.80 \times 10^{-8} \ \mathrm{m}^2 / 0.894 \ \mathrm{m} = 4.6 \times 10^{-7} \ (\Omega \ \mathrm{m})$		

Use of $2 \times \%$ U in <i>d</i> shown	[Accept $2 \times \Delta d/d$ if converted to %U]	(1)	
Addition of %U for all variabl	es shown	(1)	
%U = 9.4 (%)	[Accept answers that round to 9%]	(1)	
Example of calculation			
%U in $d = (0.01 / 0.22) \times 100 = 4.55$ %			
%U in $V = (0.005 / 4.990) \times 10^{-10}$	00 = 0.10 %		
%U in $L = (0.1 / 89.4) \times 100 =$	= 0.11 %		
%U in $I = (0.0005 / 0.4570) \times$	100 = 0.11 %		
%U in $\rho = (2 \times 4.55) + 0.10 +$	0.11 + 0.11 = 9.42 = 9.4%		
Or			
Use of uncertainties to calcula Or	te maximum ρ	(1)	
Use of uncertainties to calcula	te minimum $ ho$		
Calculation of uncertainty in μ	ho using maximum and minimum $ ho$		3
%U = 9.3 (%)	[Accept answers that round to 9%]	(1)	U
Example of calculation			
$A_{\rm max} = \pi \times (0.23 \times 10^{-3} {\rm m})^2 /4$	$= 4.15 \times 10^{-8} \mathrm{m}^2$		
$A_{\min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 =$	$= 3.16 \times 10^{-8} \text{ m}^2$		
$R_{\rm max} = V_{\rm max} / I_{\rm min} = 4.995 {\rm V} / {\rm G}$	$0.4565 \text{ A} = 10.9 \Omega$		
$R_{\min} = V_{\min} / I_{\max} = 4.985 \text{ V} / 0$	$0.4575 \text{ A} = 10.9 \Omega$		
,	$\Omega \times 4.15 \times 10^{-8} \text{ m}^2 / 0.893 \text{ m}$		
	2 + 2 + 46 + 10 - 8 + 2 + 0.805 + 30		
	$2 \times 3.46 \times 10^{\circ} \text{ m}^2 / 0.895 \text{ m}^2$		
	10-7 / 2 0 / 2 10-7 / 2)		
,			
		(1)	
Use of $U = 2 \times (U \text{ in } R_2 + U \text{ in } Or$	K ₁) snown		
	m values shown	(1)	
%U = 1.8 (%)		(1)	3
Example of calculation			
$U = 2 \times (0.05 + 0.05) = 2 \times 0.1$	= 0.2		
%U = (0.2 / 11.4) × 100 = 1.8	%		
	Addition of % U for all variable % U = 9.4 (%) Example of calculation % U in d = (0.01 / 0.22) × 100 % U in V = (0.005 / 4.990) × 1 % U in L = (0.1 / 89.4) × 100 = % U in I = (0.0005 / 0.4570) × % U in ρ = (2 × 4.55) + 0.10 + Or Use of uncertainties to calculat Or Use of uncertainties to calculat Calculation of uncertainty in ρ % U = 9.3 (%) Example of calculation $A_{max} = \pi \times (0.23 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 \times 4_{min} = 10.9 \text{ G} = 5.07 \times 10^{-7} (\Omega \text{ m})$ $\rho_{min} = R_{min} A_{max} / L_{min} = 10.9 \text{ G} = 4.21 \times 10^{-7} (\Omega \text{ m})$ U in $\rho = (5.07 \times 10^{-7} - 4.21 \times 90 \text{ U})$ U in $\rho = 0.43 \times 10^{-7} / 4.6 \times 4_{min}$ Use of an uncertainty of 0.05 $\times 4_{min}$ Use of an uncertainty of 0.05 $\times 4_{min}$ Use of maximum and minimu % U = 1.8 (%) Example of calculation U = 2 × (0.05 + 0.05) = 2 × 0.100 \text{ C}	Addition of %U for all variables shown %U = 9.4 (%) [Accept answers that round to 9%] Example of calculation %U in $d = (0.01 / 0.22) \times 100 = 4.55$ % %U in $V = (0.005 / 4.990) \times 100 = 0.10$ % %U in $V = (0.0005 / 0.4570) \times 100 = 0.11$ % %U in $f = (0.0005 / 0.4570) \times 100 = 0.11$ % %U in $\rho = (2 \times 4.55) + 0.10 + 0.11 + 0.11 = 9.42 = 9.4\%$ Or Use of uncertainties to calculate maximum ρ Or Use of uncertainties to calculate minimum ρ Calculation of uncertainty in ρ using maximum and minimum ρ %U = 9.3 (%) [Accept answers that round to 9%] Example of calculation $A_{max} = \pi \times (0.23 \times 10^{-3} \text{ m})^2 / 4 = 4.15 \times 10^{-8} \text{ m}^2$ $A_{min} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 = 3.16 \times 10^{-8} \text{ m}^2$ $R_{max} = V_{max} / I_{min} = 4.995 V / 0.4565 A = 10.9 \Omega$ $\rho_{max} = R_{max} A_{max} / L_{min} = 10.9 \Omega \times 4.15 \times 10^{-3} \text{ m}^2 / 0.893 \text{ m}$ $= 5.07 \times 10^{-7} (\Omega \text{ m})$ $\rho_{min} = R_{min} A_{min} / L_{max} = 10.9 \Omega \times 3.46 \times 10^{-8} \text{ m}^2 / 0.895 \text{ m}$ $= 4.21 \times 10^{-7} (\Omega \text{ m})$ Use of an uncertainty of 0.05 Ω in value of R_1 or R_2 Use of $U = 2 \times (U \text{ in } R_2 + U \text{ in } R_1)$ shown Or Use of maximum and minimum values shown %U = 1.8 (%)	Addition of %U for all variables shown (1) %U = 9.4 (%) [Accept answers that round to 9%] (1) Example of calculation (1) (1) %U in $d = (0.01 / 0.22) \times 100 = 4.55 \%$ (3) (1) %U in $d = (0.01 / 0.22) \times 100 = 0.10 \%$ (3) (1) %U in $V = (0.005 / 4.990) \times 100 = 0.11 \%$ (3) (1) %U in $L = (0.1 / 89.4) \times 100 = 0.11 \%$ (3) (1) %U in $L = (0.0005 / 0.4570) \times 100 = 0.11 \%$ (1) (1) %U in $P = (2 \times 4.55) + 0.10 + 0.11 + 0.11 = 9.42 = 9.4\%$ (1) Or Use of uncertainties to calculate maximum P (1) Question of uncertainty in P using maximum and minimum P (1) %U = 9.3 (%) [Accept answers that round to 9%] (1) $Example of calculation (1) (1) (1) A_{max} = \pi \times (0.23 \times 10^{-3} m)^2 / 4 = 4.15 \times 10^{-8} m^2 (1) (1) M_{max} = 4.985 V / 0.4555 A = 10.9 \Omega (1) (1) P_{max} = R_{max} A_{max} / L_{min} = 10.9 \Omega \times 4.15 \times 10^{-8} m^2 / 0.893 m (2) (3) P_{max} = R_{max} A_{max} / L_{min} = 10.9 \Omega \times 3.46 \times 10^{-7} (\Omega m) (2) (2) (2) P_{max} = C_$

Example of calculation		
Example of calculation		
Upper limit $\rho = 4.6 \times 10^{-7} \times (1 + 0.09) = 5.0 \times 10^{-7} \Omega \text{ m}$		
Lower limit $R_L = 11.4 \times (1-0.02) = 11.2 \Omega$		
Therefore both values fall in the range (confirming metal is constantan).		
Or		
%D for $\rho = 6.1\%$		
% D for $R_L = 1.8\%$	(1)	
Conclusion based on comparison of %D and %U	(1)	
[MP3 dependent MP1 or MP2]	(1)	3
Example of calculation		
%D for $\rho = (4.9 - 4.6) / 4.9 \times 100 = 6.1$ %		
%D for $R_L = (11.4 - 11.2) / 11.2 \times 100 = 1.8$ %		
Therefore both %D are less than %U (confirming metal is constantan).		
Total for question 4		17

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom