MARK SCHEME for the October/November 2010 question paper

MMM. Hiremepapers.com

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		e 2 Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010		2040	Syllabus	Pape	r		
			GCE AS	A LEVEL – Octo	ber/November	2010	9702	41		
	Section A									
1	(a) forc	force per unit mass (ratio idea essential)						B1	[1]	
	(b) gra	-	bh: correct curvature from $(R, 1.0 g_s)$ & at least one other correct point							
	(c) (i)				posite directions		a	M1		
		<i>or</i> so th	any other	sensible comment sensible comme		eia stren	gtn	A1 A0	[2]	
	(ii)	(ii) $GM_{\rm E} / x^2 = GM_{\rm M} / (D - x)^2$ (6.0 × 10 ²⁴) / (7.4 × 10 ²²) = x^2 / (60 $R_{\rm E} - x$) ² $x = 54 R_{\rm E}$								
	(iii)	grap	$\tilde{g}_{\rm E}$ and $g_{\rm N}$	east ⅔ distance to ₁ in opposite direc urvature (by eye)		urface		B1 M1 A1	[3]	
2	(a) (i)	no fo	orces (of attr	action or repulsic	on) between atom	ns / mole	cules / particle	s B1	[1]	
	(ii)		sum of kinetic and potential energy of atoms / molecules due to random motion						[2]	
	(iii)	(rand	dom) kinetic	energy increases	s with temperatur	е		M1		
		(so increase in temperature increases internal energy)						A1	[2]	
	(b) (i)	zero						A1	[1]	
	(ii)	ii) work done = $p\Delta V$								
		$= 4.0 \times 10^5 \times 6 \times 10^{-4}$ = 240 J (ignore any sign)							[2]	
	(iii)									
	. ,	change work done / J heating / J increase in internal energy / J								
			- -		000		000			

			energy / J
$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	+240	600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	Page 3		5	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
3	(a)	(i)	reso	nance		B1	[1]
		(ii)	ampl	itude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x \text{ and } \omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $13.4 \mathrm{m s^{-2}}$		C1 C1 A1	[3]
		(ii)	F =	<i>ma</i> 50 × 10 ^{−3} × 13.4		C1	
				2.0N		A1	[2]
	(c)			/s 'below' given line and never zero t 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	irge / j	ootential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = 0	$Q / 4\pi \epsilon_0 r$		B1	[1]
		(ii)	C = 0 so C	$Q/V = 4\pi\epsilon_0 r$ and $\frac{4\pi\epsilon_0}{10}$ is constant $\propto r$		M1 A0	[1]
	(c)	(i)	r = (6	/ $4\pi \varepsilon_0 r$ 5.8×10^{-12}) / ($4\pi \times 8.85 \times 10^{-12}$) × 10^{-2} m		C1 C1 A1	[3]
		(ii)	Q = 0	$CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = (= 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]
		(ii)	eithe	$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

	Pa			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010		41	
5	(a)	field into		ield into (the plane of) the paper			[1]
	(b)		² / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv 0 × 1.66 × 10 ⁻²⁷ × 1.40 × 10 ⁵) / (1.6 × 10 ⁻¹⁹ × 6.4 × 10 ⁻²⁷) 454 T	²)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1	
				$B = 0.499 \mathrm{T}$		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $P = V_S I_S$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	$\lambda = I$	nge in energy = 4.57×10^{-19} J hc / E		C1	
			= (6. = 4.4	$.63 \times 10^{-34} \times 3.0 \times 10^{8})$ / (4.57 $\times 10^{-19}$) 4 $\times 10^{-7}$ m		A1	[2]
8	(a)		-	of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ n 42He 73Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)	emitted particles have kinetic energy		in rods /	B1		
		lose	e kine	particles in the control rods is short / particles stopped tic energy in rods nergy of particles converted to thermal energy	1111005/	B1 B1	[3]

	Page 5			Mark Scheme: Teachers' version Sylla GCE AS/A LEVEL – October/November 2010 970		Paper 41	
L				Section B		<u>-</u>	
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]
		(ii)	(G =) 1 + R_2 / R_1		B1	[1]
	(b)	(i)	•	= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]
		(ii)	(<i>R</i> ₂ / (1 +	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))	mark in (b)(ii)	A1	[1]
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]
		(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ^{−3}		A1	[1]
	(b)	(i)	I = I	$T + I_R$		B1	[1]
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]
			2. α	≈ 1		A1	[1]
	(c)	eith or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body		M1 M1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unw	anted random power / signal / energy		B1	[1]
		(ii)	loss	of (signal) power / energy		B1	[1]
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = $10 \log (P_2 / P_1)$ = $10 \log (\{2.9 \times 10^{-6}\} / \{$	3 4 × 10 ⁻⁹ })	C1	
				= 29 dB maximum length = (29 – 24) / 12 = 0.42 km = 420 m		A1 C1 A1	[4]
			or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg $(P / \{3.4 \times 10^{-9}\})$ $P = 8.54 \times 10^{-7}$ W power loss in cables = 10 lg $(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-6}\})$	0 ⁻⁷ })	(C1) (A1) (C1)	
				= 5.3 dB length = 5.3 / 12 km = 440 m		(A1)	

Pa	age 6	Ма	rk Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS	/A LEVEL – October/November 2010	9702	41	
		d to the m	icrophone ers scores no mark)		M1 A1	[2]
12 (a)	satellite red signal amp at a different different fre e.g. of freq	ceives great lified and nt (carrier) equencies uencies us	nitted from Earth to satellite atly attenuated signal transmitted <u>back to Earth</u> o frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	(1) (1) (1) (1)	B1 B1 B2	[4]
(b)	advantage:	e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
	uisauvanta	ige. e.g.	<i>either</i> must be tracked <i>or</i> limited use in any one orbit more satellites required for continuous of	peration	M1 A1	[4]