

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9702	22	
1	(a)	$\frac{f}{t} = \frac{\pi P}{8C}$ $= [\pi \times 1.04]$	<u>r⁴</u> 21 2.5 × 10 ³ × (0.75 × 10 ^{−3}) ⁴] / (8 × 1.2 × 10 ^{−6} × 0.25) 4 × 10 ^{−3} N s m ^{−2}		C1 A1	[2]
	(b) 4 %	× %r %C = %	P + 4 × %r + %V/t + %1		C1	
		= 20 $\Delta C = \pm$	% + 5.3% + 0.83% + 0.4% (= 8.6%) 0.089 × 10^{-3} N s m ⁻²		A1 A1	[3]
	(c)	C = (1.	$04 \pm 0.09) \times 10^{-3} \mathrm{Nsm^{-2}}$		A1	[1]
2	(a) (i) v ² = = =	$u^2 + 2as$ $(8.4)^2 + 2 \times 9.81 \times 5$ 12.99 m s^{-1} (allow 13 to 2 s.f. but not 12.9)		C1 A1	[2]
	(i	i) $t = (0) = ($	$(v - u) / a$ or $s = ut + \frac{1}{2}at^2$ 12.99 - 8.4) / 9.81 or 5 = 8.4t + $\frac{1}{2} \times 9.81t^2$ 0.468 s		M1 A0	[1]
	(b) re si ca w	easona uitable orrectly vith non	ble shape scale plotted 1 st and last points at (0,8.4) and (0.88 – 0.96,0) -vertical line at 0.47 s)	M1 A1 A1	[3]
	(c) (i	i) 1. k	inetic energy at end is zero so $\Delta KE = \frac{1}{2} mv^2$ or $\Delta KE = \frac{1}{2} \times 0.05 \times (8.4)^2$ = (-) 1.8 J	½ mu² − ½ mv²	C1 A1	[2]
		2. fi c	nal maximum height = $(4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})$ hange in PE = $mgh_2 - mgh_1$ = $0.05 \times 9.8 \times (0.9 - 5)$ = $(-) 2.0 \text{ J}$		C1 C1 A1	[3]
	(ii	i) chai	nge is – 3.8 (J) ray lost to ground (on impact) / energy of deformation o	f the hall /	B1	
		ther	mal energy in ball		B1	[2]
3	(a) A (e	body o externa	continues at rest or constant velocity unless acted on by I) force	/ a resultant	B1	[1]
	(b) (i	i) con: no r	stant velocity/zero acceleration and therefore no resulta esultant force (and no resultant torque) hence in equilib	int force prium	M1 A1	[2]
	(i	i) <u>com</u> tens	ponent of weight = 450 × 9.81 × sin 12° (= 917.8) ion = 650 + 450 g sin12° = (650 + 917.8) = 1600 (1570)N		C1 C1 A1	[3]

	Page 3	Mark Scheme: Teachers' version Syllabu		Paper	
		GCE AS/A LEVEL – May/June 2012	9702	22	
	(iii) wor outp	k done against frictional force or friction between log ar out power greater than the gain in PE / s	nd slope	M1 A1	[2]
4	(a) total res current = p.d. = [1	istance = 20 (kΩ) = 12 / 20 (mA) or potential divider formula 2 / 20] × 12 = 7.2 V		C1 C1 A1	[3]
	(b) parallel total res current =	resistance = 3 (kΩ) istance 8 + 3 = 11 (kΩ) = 12 / 11 × 10 ³ = 1.09 × 10 ⁻³ or 1.1 × 10 ⁻³ A		C1 C1 A1	[3]
	(c) (i) LDF tota	R resistance decreases I resistance (of circuit) is less hence current increases		M1 A1	[2]
	(ii) resi less	stance across XY is less proportion of 12V across XY hence p.d. is less		M1 A1	[2]
5	(a) <i>E</i> = stres	ss / strain		B1	[1]
	(b) (i) 1. d 2. o	iameter / cross sectional area / radius riginal length		B1	[1]
	(ii) mea mea allo	asure original length with a <u>metre</u> ruler / tape asure the <u>diameter</u> with micrometer (screw gauge) <i>w digital vernier calipers</i>		B1 B1	[2]
	(iii) ene	rgy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx ² = $\frac{1}{2} \times 0.25 \times 10^{-3} \times 3 = 3.8 \times 10^{-4}$ J		C1 A1	[2]
	(c) straight line thro	line through origin below original line ugh (0.25, 1.5)		M1 A1	[2]
6	(a) two wav same fre	es travelling (along the same line) in opposite direction equency / wavelength	s overlap/meet	M1 A1	
	resultant displacement is the sum of displacements of each wave / produces nodes and antinodes				[3]
	(b) apparati adjustmo measure	us: source of sound + detector + reflection system ent to apparatus to set up standing waves – how recog ements made to obtain wavelength	nised	B1 B1 B1	[3]
	(c) (i) at le	east two nodes and two antinodes		A1	[1]
	(ii) nod c = f = 3	e to node = $\lambda / 2$ = 34 cm (allow 33 to 35 cm) $f\lambda$ 340 / 0.68 = 500 (490 to 520) Hz		C1 C1 A1	[3]

© University of Cambridge International Examinations 2012

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012	9702	22	
7	(a) W = 1 ar Y = 2 Z = 55	nd X = 0		A1 A1 A1	[1] [1] [1]
	(b) explanat energy r em radia	ion in terms of mass – energy conservation eleased as gamma or photons or kinetic energy of p ation	products or	B1 B1	[2]