www. tremepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012	9702	21	
1	(a) (i) V ur	nits: m³ (allow metres cubed or cubic metres)		A1	[1]
	(ii) Pres Unit	ssure units: $kg m s^{-2} / m^2$ (allow use of $P = \rho gh$) s: $kg m^{-1} s^{-2}$		M1 A0	[1]
		s: $m^3 s^{-1}$ bstitution of units for P , r^4 and l $\frac{r^4}{r^{-1}l} = \frac{kgm^{-1} s^{-2} m^4}{m^3 s^{-1} m}$		B1 M1	
	Units: kg (8 or π in	gm ⁻¹ s ⁻¹ on final answer –1. Use of dimensions max 2/3)		A1	[3]
2	= (Use	u + at $4.23 + 9.81 \times 1.51$ $19.0(4) \text{ ms}^{-1}$ (Allow 2 s.f.) $a \circ f - g \text{ max } 1/2$. Use of $g = 10 \text{ max } 1/2$. Allow use of $g = 10 \text{ max } 1/2$. Allow use of $g = 10 \text{ max } 1/2$. $g \circ f = 10 \text{ max } 1/2$. $g \circ f = 10 \text{ max } 1/2$. Allow use of $g = 10 \text{ max } 1/2$. $g \circ f = 10 \text{ max } 1/2$. g	f 9.8. Allow 19 r	C1 M1 A0 m s ⁻¹)	[2]
		= 4.23 × 1.51 + 0.5 × 9.81 × (1.51) = 17.6 m (or 17.5 m) (Use of –g here wrong physics (0/2))		A1	[2]
	=	: ΔP / Δt need idea of <u>change</u> in momentum : [0.0465 × (18.6 + 19)] / 12.5 × 10 ⁻³ : 140 N e of – sign max 2/4. Ignore –ve sign in answer)		C1 C1 A1	
	•	ction: upwards		B1	[4]
	=	$1.12 \times (18.6)^2 / 9.81$ 17.6 m (2 s.f. -1) $19.06 \text{ of } 19 \text{ m s}^{-1}, 0/2 \text{ wrong physics})$		C1 A1	[2]
	(c) either or	kinetic energy of the ball is not conserved on impact speed before impact is not equal to speed after hence	inelastic	B1	[1]
3		nt force (and resultant torque) is zero down) = force from/due to spring (up)		B1 B1	[2]
	(b) (i) 0.2,	0.6, 1.0 s (one of these)		A1	[1]
	(ii) 0, 0	.8s (one of these)		A1	[1]
	(iii) 0.2,	0.6, 1.0 s (one of these)		A1	[1]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012 970		21	
	(c) (i)	Hooke's law: extension is proportional to the force (not mathematical linear/straight line graph hence obeys Hooke's law	ass)	B1 B1	[2]
	(ii)	Use of the gradient (not just $F = kx$) $K = (0.4 \times 9.8) / 15 \times 10^{-2}$ $= 26(.1) \text{ N m}^{-1}$		C1 M1 A0	[2]
	(iii)	either energy = area to left of line or energy = $\frac{1}{2} ke^2$ = $\frac{1}{2} \times [(0.4 \times 9.8) / 15 \times 10^{-2}] \times (15 \times 10^{-2}]$ = 0.294 J (allow 2 s.f.)) ²	C1 C1 A1	[3]
4	(a) (i)	$R = V^2 / P$ or $P = IV$ and $V = IR$ = $(220)^2 / 2500$		C1	
		= 19.4Ω (allow 2 s.f.)		A1	[2]
	(ii)	$R = \rho l / A$ $l = [19.4 \times 2.0 \times 10^{-7}] / 1.1 \times 10^{-6}$ = 3.53 m (allow 2 s.f.)		C1 C1 A1	[3]
	(b) (i)	P = 625, 620 or 630 W		A1	[1]
	(ii)	R needs to be reduced Either length ¼ of original length		C1	
		or area 4× greater or diameter 2× greater		A1	[2]
5	(a) (i)	sum of e.m.f.'s = sum of p.d.'s around a loop/circuit		B1	[1]
	(ii)	energy		B1	[1]
	(b) (i)	$2.0 = I \times (4.0 + 2.5 + 0.5)$ I = 0.286 A		C1 A1	[2]
	(ii)	$R = [0.90 / 1.0] \times 4 (= 3.6)$ $V = I R = 0.286 \times 3.6 = 1.03 \text{ V}$ (If factor of 0.9 not used, then 0/2 marks)		C1 A1	[2]
	(iii)	<i>E</i> = 1.03 V		A1	[1]
	(iv)	either no current through cell Bor p.d. across r is zero		В1	[1]
6	(a) (i)	coherence: constant phase difference between (two) waves		M1 A1	[2]
	(ii)	path difference is either λ or $n\lambda$ or phase difference is 360° or $n\times$ 360° or $n2\pi$ rad		B1	[1]

	Page 4		ļ	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2012	9702	21	
		(iii)	-	difference is either $\lambda/2$ or $(n + \frac{1}{2}) \lambda$ phase difference is odd multiple of either 180° or π rad		B1	[1]
		(iv)	=	$\lambda D / a$ [630 × 10 ⁻⁹ × 1.5] / 0.45 × 10 ⁻³ 2.1 × 10 ⁻³ m		C1 C1 A1	[3]
	(b)	(b) no change to <u>dark</u> fringes no change to separation/fringe width <u>bright</u> fringes are brighter/lighter/more intense				B1 B1 B1	[3]
7	(a)	(i)	2 pro	otons and 2 neutrons		B1	[1]
		(ii)	mass cons abso (not high defle	positively charged 2e s 4u stant energy prize by thin paper or few cm of air (3 cm → 8 cm) low penetration) ly ionizing ected in electric/magnetic fields e mark for each property, max 2)		B2	[2]
	(b)	diffe ene	erenc ergy ir	ergy is conserved e in mass 'changed' into a form of energy n the form of kinetic energy of the products / γ-radiation / e.m. radiation		B1 B1	[3]