MNN. Xiremedabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9702	41

Section A

1	(a)	_	le (subtended) <u>at centre</u> of circle arc equal in length to radius	B1 B1	[2]
	(b)	(i)	point S shown below C	B1	[1]
		(ii)	(max) force / tension = weight + centripetal force centripetal force = $mr\omega^2$ 15 = 3.0/9.8 × 0.85 × ω^2 ω = 7.6 rad s ⁻¹	C1 C1 C1 A1	[4]
2	(a)	(i)	27.2 + 273.15 or 27.2 + 273.2 300.4 K	C1 A1	[2]
		(ii)	11.6 K	A1	[1]
	(b)	(i)	($< c^2 >$ is the) mean / average square speed	B1	[1]
		(ii)	$\rho = Nm/V$ with N explained so, $\rho V = 1/3 Nm < c^2 >$ and $\rho V = NkT$ with N explained so mean kinetic energy $N < N$ = N =	B1 B1 B1 B1	[4]
	(c)	(i)	pV = nRT 2.1 × 10 ⁷ × 7.8 × 10 ⁻³ = $n \times 8.3 \times 290$ n = 68 mol	C1 A1	[2]
		(ii)	mean kinetic energy = $3/2 kT$ = $3/2 \times 1.38 \times 10^{-23} \times 290$ = $6.0 \times 10^{-21} J$	C1 A1	[2]
		(iii)	realisation that total internal energy is the total kinetic energy energy = $6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}$ = 2.46×10^5 J	C1 C1 A1	[3]
3	(a)	(i)	to-and-fro / backward and forward motion (between two limits)	B1	[1]
		(ii)	no energy loss or gain / no external force acting / constant energy / constant an	nplitud B1	de [1]
	((iii)	acceleration directed towards a fixed point acceleration proportional to distance from the fixed point / displacement	B1 B1	[2]
	(b)		eleration is constant (magnitude) cannot be s.h.m.	M1 A1	[2]

Page 3		Mark Scheme: Teachers' version		Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2010 9702		9702	41	
4		-	do work ult of the	position/shape, etc. of an object		B1 B1	[2]
	(b) (i)	1	$\Delta {\sf E}_{\sf gpe}$	= GMm/r = $(6.67 \times 10^{-11} \times \{2 \times 1.66 \times 10^{-27}\}^2) / (3.8 \times 10^{-49} \text{ J})$ = $1.93 \times 10^{-49} \text{ J}$	10 ⁻¹⁵)	C1 C1 A1	[3]
		2	$\Delta E_{ ext{epe}}$	= $Qq / 4\pi\epsilon_0 r$ = $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 10^{-12})^2$) ^{–15})	C1 C1 A1	[3]
	(ii) idea that $2E_{\rm K} = \Delta E_{\rm epe} - \Delta E_{\rm gpe}$ $E_{\rm K} = 3.03 \times 10^{-14} \rm J$					B1	
			3.03 × 10 .19 MeV	$(0^{-14}) / 1.6 \times 10^{-13}$		M1 A0	[2]
	(iii)	fusio	on may o	occur / may break into sub-nuclear particles		B1	[1]
5	(a) (i)	(a) (i) V_H depends on angle between (plane of) probe and B -field either V_H max when plane and B -field are normal to each other or V_H zero when plane and B -field are parallel					
		or	V _H de	epends on sine of angle between plane and <i>B</i> -	field	B1	[2]
	(ii)		to 1 s.f.	es $V_H r$ at least three times constant so valid s.f., not constant so invalid		M1 A1	[2]
		2	straight	line passes through origin		B1	[1]
	.,.,	rate cons	of chan stant fiel	ed is proportional / equal to ge of (magnetic) flux (linkage) d in <u>coil</u> / flux (linkage) of <u>coil</u> does not change rrent (in wire) / switch current on or off / use a.		M1 A1 B1	[3]
			te coil e coil <u>to</u>	wards / away from wire (1 mark each, max 3)		ВЗ	[3]
6		a) all four diodes correct to give output, regardless of polarity connected for correct polarity					[2]
	V_0	= √2	$= V_{S} / V_{rms}$			C1 C1	
	rati			$(\sqrt{2} \times 240)$ or 1/37 or 0.027		A1	[3]

	ugc ¬		Mark General: reactions version	Cynabas	i apci	
			GCE AS/A LEVEL – May/June 2010 9702			
7 (a) arro	ow po	inting up the page		B1	[1]
(b) (i)	V	= Bqv = $(12 \times 10^3) / (930 \times 10^{-6})$ = $1.3 \times 10^7 \text{ m s}^{-1}$		C1 C1 A1	[3]
	(ii)	q/m	= mv^2 / r = $(1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ $8 \times 10^{11} \text{ C kg}^{-1}$		C1 C1 A1	[3]
8 (a	(a) momentum conservation hence momenta of photons are equal (but opposite) same momentum so same energy					[2]
(b) (i)	(Δ) <i>E</i>	$= (\Delta)mc^{2}$ = 1.2 × 10 ⁻²⁸ × (3.0 × 10 ⁸) ² = 1.08 × 10 ⁻¹¹ J		C1 A1	[2]
	(ii)	E λ	= hc / λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$ = 1.84×10^{-14} m		C1 A1	[2]
	(iii)	λ p	= h/p = $(6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$ = 3.6×10^{-20} N s		C1 A1	[2]
			Section B			
9 (a) (i)	poin	t X shown correctly		B1	[1]
	(ii)	non-	mp has <u>very large</u> / infinite gain inverting input is at earth (potential) / earthed / at 0 V iplifier is not to saturate, inverting input must be (almos	st)	M1 M1	
			arth potential / 0 (V) same potential as inverting input		A1	[3]
(b) (i)	(amp	input resistance = $1.2 \text{ k}\Omega$ blifier) gain (= $-4.2 / 1.2$) = -3.5 meter) reading = -3.5×-1.5		C1 C1	
		`	= 5.25 V I disregard of signs or incorrect sign in answer, max 2	marks)	A1	[3]
	(ii)	(amp	s bright so) resistance of LDR increases blifier) gain decreases meter) reading decreases		M1 M1 A1	[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

Pag	ge 5	M	ark Scheme: Teachers' version	Syllabus	Paper	
		GC	9702	41		
(a)	repeated images / combine repeated to build u	I at different data is pro d / added to I for succes up a 3-D im	t angles cessed o give (2-D) image of slice sive slices age		B1 B1 B1 B1 B1 B1 max 6	[6]
(b)	(i) 16				A1	[1]
	` '		ducting 16 then dividing by 3		C1 A1	[2]
(a)					M1 A1	[2]
(b)	(1 each, disadvar	max 2) itages e.g.	less noise / less interference greater bandwidth / better quality short range / more transmitters / line of sig more complex circuitry greater expense	ht	B4	[4]
(a)	190 = 1 or -190	$0 \lg(18 \times 10) = 10 \lg P_2 /$	$0^3 / P_2$) (18×10^3)		C1 C1 A1	[3]
	(i) 11 (ii) e.g.	SHz / 12 GF so that inpu	dz ut signal to satellite will not be 'swamped'		B1 B1	[1]
	(a) (b) (a)	repeated images / combine repeated to build usimage can be image can be image. (a) frequency (in synchronic can be image can be image. (b) (ii) advantage (1 each, disadvar can be image can be image. (b) (ii) advantage (1 each, disadvar can be image can be image. (b) (ii) advantage can be image can be image. (b) (ii) advantage can be image can be image. (b) (ii) advantage can be image ca	(a) X-ray taken of slice repeated at different images / data is procombined / added to repeated for success to build up a 3-D imitimage can be viewed. (b) (i) 16 (ii) evidence of decto give 3 2 6 5 (a) frequency of carrier (in synchrony) with give (in synchrony) with	(a) X-ray taken of slice / plane / section repeated at different angles images / data is processed combined / added to give (2-D) image of slice repeated for successive slices to build up a 3-D image image can be viewed from different angles / rotated (b) (i) 16 (ii) evidence of deducting 16 then dividing by 3 to give 3 2 6 5 (a) frequency of carrier wave varies (in synchrony) with signal (in synchrony) with displacement of signal (b) advantages e.g. less noise / less interference greater bandwidth / better quality (1 each, max 2) disadvantages e.g. short range / more transmitters / line of signal (1 each, max 2) (a) gain / loss/dB = 10 lg(P ₁ /P ₂) 190 = 10 lg(18 × 10 ³ / P ₂) or -190 = 10 lg P ₂ / 18 × 10 ³) power = 1.8 × 10 ⁻¹⁵ W (b) (i) 11 GHz / 12 GHz	(a) X-ray taken of slice / plane / section repeated at different angles images / data is processed combined / added to give (2-D) image of slice repeated for successive slices to build up a 3-D image image can be viewed from different angles / rotated (b) (i) 16 (ii) evidence of deducting 16 then dividing by 3 to give 3 2 6 5 (a) frequency of carrier wave varies (in synchrony) with signal (in synchrony) with displacement of signal (b) advantages e.g. less noise / less interference greater bandwidth / better quality (1 each, max 2) disadvantages e.g. short range / more transmitters / line of sight more complex circuitry greater expense (1 each, max 2) (a) gain / loss/dB = 10 lg(P ₁ /P ₂) 190 = 10 lg(18 × 10 ³ / P ₂) or -190 = 10 lg P ₂ / 18 × 10 ³) power = 1.8 × 10 ⁻¹⁵ W (b) (i) 11 GHz / 12 GHz (ii) e.g. so that input signal to satellite will not be 'swamped'	GCE AS/A LEVEL - May/June 2010 9702 41