

INTERNATIONAL A-LEVEL MATHEMATICS MA04

(9660/MA04) Unit S2 Statistics

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

Q	Answer	Marks	Comments
1(a)(i)	standard deviation = $\sqrt{15}$	B1	Allow AWRT 3.9
		1	

Q	Answer	Marks	Comments
1(a)(ii)	$P(W \le 20) = 0.9170 [> 0.9]$ $P(W \le 19) = 0.8752 [< 0.9]$	M1	For one correct probability PI by correct value of <i>a</i>
	<i>a</i> = 20	A1	
		2	

Q	Answer	Marks	Comments
1(a)(iii)	$P(W > 24) = 1 \cdot 0.9888 $ [= 0.0112 > 0.01] $P(W > 25) = 1 \cdot 0.9938 $ [= 0.0062 < 0.01]	M1	For one correct probability PI by correct value of <i>b</i> Allow 0.0111 and 0.0061 from calculator
	<i>b</i> = 25	A1	
		2	

Q	Answer	Marks	Comments
1(b)	$P(X \le 4) - P(X \le 2)$	M1	$P(X \le m) - P(X \le n)$ with at least one of $m = 4, n = 2$ PI by correct answer
	[= 0.8153 - 0.4232]		
	= 0.392	A1	AWRT 0.392
		2	

Q	Answer	Marks	Comments
1(c)(i)	As n is large and p is small	B1	oe eg $n > 20$ and $p < 0.25$
		1	

Q	Answer	Marks	Comments
1(c)(ii)	$\lambda = 10$	B1	oe
		1	

Q	Answer	Marks	Comments
1(c)(iii)	$\left[\lambda = 15 + 3 + 10\right]$		
	$\begin{bmatrix} \lambda = 15 + 3 + 10 \end{bmatrix}$ $\lambda = 28$	B1ft	ft their λ from (c)(ii)
	$\left[P(C<3)=\right]$		
	$\frac{e^{-28} \times 28^0}{0!} + \frac{e^{-28} \times 28^1}{1!} + \frac{e^{-28} \times 28^2}{2!}$	M1	M1 for at least one correct probability in the sum in the form $ne^{-\lambda}$ ft their 28
	$=421e^{-28}$	A1	CAO NMS 3/3
		3	

|--|

Q	Answer	Marks	Comments
2(a)	$P(X > 50) = P(Z > \frac{50 - 38}{11})$	M1	For standardising $\frac{50-38}{11}$ PI
	[P(Z < 1.09) =] 0.86214 [from tables]	M1	0.862[14] seen or used Pl
	$\left[P(Z > 1.09) = \right] 1 - 0.86214$		
	= 0.138	A1	Allow 0.13786 [from use of tables] NMS 3/3
		3	
Q	Answer	Marks	Comments
2(b)	$H_0: \mu = 38$ $H_1: \mu < 38$	B1	Condone 'mu' or other letters, but not \overline{x}
	$\overline{X} \sim N\left(38, \frac{11^2}{30}\right)$	B1	PI by correct standardisation formulae
	$z = \frac{34 - 38}{11/\sqrt{30}}$	М1	$z = rac{34 - 38}{\sigma / \sqrt{30}}$ with their σ PI by correct z
	<i>z</i> = –1.9917	A1	AWRT – 1.99 or exact value $-\frac{4\sqrt{30}}{11}$
	$z_{\text{critical}} = \pm 2.0537$	B1	or $P\left(Z < -\frac{4\sqrt{30}}{11}\right) = 0.0232 \text{ to } 0.0233$ or comparison of $P\left(\overline{X} < 34\right) = 0.0232 \text{ to } 0.0233$ with 2% Allow 'accept H ₀ '
	Do not reject H_0 as $z_{critical} < z$ or -2.0537 < -1.99 or $ z < 2.0537$	A1ft	Comment about H ₀ and 0.0232 to 0.0233 > 0.02 Correct conclusion based upon ft
	Insufficient evidence to support the claim that the journey time has reduced from 38 minutes on average [at the 2% level of significance]	E1	their <i>z</i> (signs need to be compatible) Correct statement must be in context and must follow from fully correct solution. Condone definite statement.
		7	
	Question 2 Total	10	

Q	Answer	Marks	Comments
3(a)	Exponential and $\lambda = \frac{1}{8}$	B1	
		1	

Q	Answer	Marks	Comments
3(b)	$P(T > 7) = 1 - P(T \le 7)$	M1	Ы
	$\left[=1-\left(1-e^{-\frac{7}{8}}\right)\right]=0.4169$	A1	Attempts to find correct probability using cdf of exponential or integration of pdf CAO to 4 sf
		2	

Q	Answer	Marks	Comments
3(c)	$\left[1-e^{-\frac{x}{8}}=0.95\Rightarrow\right] x=-8\ln(0.05)$	M1	Attempt to find x by simplifying an equation using a cdf of exponential or integration of pdf oe
	<i>x</i> = 23.9658		
	<i>L</i> = 23970 [hours]	A1	oe
		2	

Q	Answer	Marks	Comments
3(d)	P(T < 10 T > 7) = P(T < 3)	M1	Attempt to find <i>t</i> by simplifying an equation using a cdf of exponential or integration of pdf
	$\left[=1-e^{-\frac{3}{8}}\right]$		
	= 0.3127	A1	AWRT 0.3127
		2	

Q	Answer	Marks	Comments
3(e)	The no memory property of the exponential distribution suggests the component is memoryless [however given the component is already 7 thousand hours old it is 'more likely' to break]	E1	Reference to 'memory' or comment about increasing chance of breakdown
		1	

Question 3 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
4(a)	$\frac{k-0.4}{5-4} = \frac{0.4-0}{4-2}$	M1	Correct equation to find k M1 for $m = 0.2$
	<i>k</i> = 0.6	A1	oe
		2	

Q	Answer	Marks	Comments
		B1	B1 for correct values of $F(x)$ for $x < 2$
	0 x < 2	M1	and $x \ge 9$ M1 for use of a straight line method to
4(b)	$F(x) = \begin{cases} 0 & x < 2 \\ 0.2x - 0.4 & 2 \le x < 5 \\ 0.1x + 0.1 & 5 \le x < 9 \end{cases}$	A1	find an equation A1 for one correct equation
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	A1 for both correct equations
		B1	B1 all correct domains
		5	

Q	Answer	Marks	Comments
4(c)	[F(6) - F(4) =] (0.1×6+0.1)-(0.2×4-0.4)	М1	Attempt using their F(6) and F(4)
	= 0.3	A1	ое
		2	

Question 4 Total	9	
------------------	---	--

Q	Answer	Marks	Comments
5(a)	$X \sim B(50, 0.9)$	M1	or $Y \sim B(50, 0.1)$
	[$m p$ is the probability of a successful repair]		
	$H_0: p = 0.9$ $H_1: p > 0.9$	B1	or $\begin{array}{l} H_0: p = 0.1 \\ H_1: p < 0.1 \end{array}$
	$\left[1-P(X \le 48)=\right]1-0.9662$ or 0.0338	M1	Sight of AWRT 0.0338
	$P(X \ge 49) = 0.0338$	A1	$P(Y \le 1) = 0.0338$ Award M1 A1 for: critical region for <i>Y</i> is {0} oe , or critical region for <i>X</i> is {50} oe
	0.0338 > 0.01	M1	oe Comparison of their probability to 0.01
	Do not reject H _o	A1ft	Correct conclusion for their value
	Insufficient evidence to suggest that Sam's success rate has improved.	E1	Cannot be a definite statement. Must follow a fully correct test
		7	

Q	Answer	Marks	Comments
5(b)	Accepting that the success rate [in repairing water damaged phones] for Sam has increased from 90% when it has not	B1	Must be in context
		1	

Q	Answer	Marks	Comments
5(c)	The successful repair of each phone is not likely to be independent as they were damaged in the same flood and so shouldn't be modelled as a Binomial	B1	
		1	

Question 5 Tota	9	
-----------------	---	--

Q	Answer	Marks	Comments
6	H ₀ : $\mu = 6.03$ H ₁ : $\mu > 6.03$	B1	Both hypotheses
	$\overline{x} = \frac{73.08}{12} = 6.09$	B1	РІ
	$s^2 = \frac{1}{12 - 1} \left(445.2502 - \frac{73.08^2}{12} \right)$	M1	Attempt at calculating variance, allow one error PI by correct answer
	$\left[=\frac{193}{11000}\right]=0.017\dot{5}\dot{4}$	A1	AWRT 0.0175 Accept <i>s</i> = 0.132[4592562]
	$\overline{X} \sim N\left(6.03, \ \frac{0.017\dot{5}\dot{4}}{12}\right)$	M1	$\overline{X} \sim N\left(6.03, \frac{s^2}{12}\right)$ with their s^2 PI
	$t = \frac{6.09 - 6.03}{\sqrt{\frac{0.0175\dot{4}}{12}}}$	M1	Calculates <i>t</i> with their s^2
	t = 1.56[9132297]	A1	AWRT 1.57
	$t_{\text{critical}} = 1.363$ [using $v = 11$]	B1	<i>p</i> = 0.0725
	As 1.36 < 1.57 or $t_{\text{critical}} < t$, reject H_0	A1ft	or 0.0725 < 0.1, reject H ₀ ft their <i>t</i> and <i>t</i> _{crit} provided signs are consistent
	Evidence to suggest that that Hannah's coach has improved her distance jumped [at the 10% level of significance]	E1	Must not be definitive Must be in context
		10	

Question 6 To

Q	Answer	Marks	Comments
7(a)	$\int_{0}^{1} \frac{3x^{\frac{1}{2}} + k}{6} \mathrm{d}x = 1$		
	$\left[\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{6}kx\right]_{0}^{1} = 1$	M1	Correct integral set equal to 1 with at least 1 correct integration oe
	$\left[\left(\frac{1}{3} + \frac{1}{6}k\right) - (0+0)\right] = 1$		
	<i>k</i> = 4	A1	AG Requires at least one intermediate line after integration
		2	

Q	Answer	Marks	Comments
7(b)	$\left[\int x f(x) dx\right] = \int_{0}^{1} \frac{3x^{\frac{3}{2}} + 4x}{6} dx$	M1	Identifies correct integral
	$= \left[\frac{1}{5}x^{\frac{5}{2}} + \frac{1}{3}x^{2}\right]_{0}^{1}$	M1	Correct integration for their $x f(x) dx$
	$\left[\frac{1}{5} + \frac{1}{3}\right] = \frac{8}{15}$	A1	CAO
		3	

Q	Answer	Marks	Comments
7(c)	$\left[E(X^{2}) = \int x^{2} f(x) dx = \right] \int_{0}^{1} \frac{3x^{\frac{5}{2}} + 4x^{2}}{6} dx$	M1	Identifies correct integral
	$= \left[\frac{1}{7}x^{\frac{7}{2}} + \frac{2}{9}x^{3}\right]_{0}^{1}$ $E(X^{2}) = \frac{23}{63}$	M1	Correct integration
	$\mathrm{E}\left(X^2\right) = \frac{23}{63}$	A1	РІ
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \operatorname{E}(X)^{2}$		
	$=\frac{23}{63}-\left(\frac{8}{15}\right)^2$	M1	ft their $E(X^2)$
	$=\frac{127}{1575}$	A1	AG
		5	

Q	Answer	Marks	Comments
7(d)(i)	$15 \operatorname{E}(X) - 9 \operatorname{E}(Y)$	M1	
	$=15\times\frac{8}{15}-9\times2$		
	=-10	A1	
		2	

Q	Answer	Marks	Comments
7(d)(ii)	$225 \operatorname{Var}(X) + 81 \operatorname{Var}(Y)$	M1	
	$=225\times\frac{127}{1575}+81\times\frac{5}{7}$		
	=76	A1	
		2	

Question 7 To	14
---------------	----

Q	Answer	Marks	Comments
8(a)(i)	$a = 1.9600\sigma$	B1	Condone AWRT 1.96
		1	

Q	Answer	Marks	Comments
8(a)(ii)	$b = \mu + 0.9945\sigma$	B1	Condone $b = \mu + 0.9944\sigma$
		1	

Q	Answer	Marks	Comments
8(a)(iii)	$\mu - c \qquad \mu \qquad \mu + c \qquad x$	B1	Must be approximately symmetrical and have labels $\mu - c$ and $\mu + c$
		1	

Q	Answer	Marks	Comments
8(b)	$\left[P(Z < z) = 0.975 \implies] z = 1.96\right]$	B1	
	$\left[P(Z < z) = 0.975 \implies] z = 1.96$ $1.96 = \frac{205 - m}{\sqrt{0.8m}}$	M1	
	$\left(\sqrt{m}\right)^2 + 1.7530 [77294] \sqrt{m} - 205 = 0$	m1	A quadratic equation in m or \sqrt{m} set equal to zero PI by 181.38 or 231.68, or 13.46 or -15.22
	$\sqrt{m} = 13.4[6808822]$	A1	AWFW [13.4, 13.5] PI by <i>m</i> = 181.39
	<i>m</i> = 181.39	A1	This value and no others
		5	

Question 8 To	8	
---------------	---	--