

INTERNATIONAL A-LEVEL MATHEMATICS

MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

М	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
$\sqrt{\mathbf{or}}$ ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
<i>–x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

Q	Answer	Marks	Comments
1(a)	$\left[f(x+1)-f(x-2)=\right] 3^{x+1}-3^{x-2}$	B1	
	$=3^{x}(3-3^{-2})$	M1	oe , e.g. $3^{x-2}(3^3-1)$ Factorises
	$=\frac{26}{9}f(x)$	A1	Correct simplified value of <i>k</i>
		3	

Q	Answer	Marks	Comments
1(b)(i)	$x = \frac{3 - y}{5 + 2y}$ $5x + 2xy = 3 - y$	M1	Interchanges <i>x</i> and <i>y</i>
	5x + 2xy = 3 - y		
	2xy + y = 3 - 5x	M1	Attempt to rearrange
	$2xy + y = 3 - 5x$ $\left[y = g^{-1}(x) = \right] \frac{3 - 5x}{1 + 2x}$	A1	ACF , e.g. $3 - \frac{11x}{1+2x}$
		3	

Q	Answer	Marks	Comments
1(b)(ii)	$g^{-1}(x) \in \Box$, $g^{-1}(x) \neq -2.5$	B1	oe Condone omission of $g^{-1}(x) \in \Box$ Allow $y \neq -2.5$ and no other values
		1	

Question 1 To	al 7	
---------------	------	--

Q	Answer	Marks	Comments
2(a)	$\begin{bmatrix} 8\cos\theta + 15\sin\theta = \end{bmatrix}$ $R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$	M1	
	<i>R</i> = 17	B1	
	$\alpha = 62^{\circ}$	A1	AWRT 62°
	$\begin{bmatrix} 8\cos\theta + 15\sin\theta = \end{bmatrix} 17\cos(\theta - 62^\circ)$		
		3	

Q	Answer	Marks	Comments
2(b)(i)	0	B1	
		1	

Q	Answer	Marks	Comments
2(b)(ii)	152°	B1	AWRT 152° Any correct value eg 332°, 512°
		1	

Q	Answer	Marks	Comments
2(c)	$\begin{bmatrix} \text{Let } X = 2y + 10^{\circ} \\ 8 \cos \operatorname{ec} X + 15 \sec X = 8.5 \tan X + 8.5 \cot X \end{bmatrix}$		
	$\frac{8}{\sin X} + \frac{15}{\cos X} = 8.5 \left(\frac{\sin X}{\cos X} + \frac{\cos X}{\sin X}\right)$	B1	PI
	$8\cos X + 15\sin X = 8.5(\sin^2 X + \cos^2 X)$	M1	Eliminate fractions
	$17\cos(X-62)=8.5$	A1ft	ft their part (a)
	$17\cos(2y+10-62)=8.5$		
	$\left[\cos\left(X-62\right)=0.5\right]$		
	$X - 62 = \pm 60$		
	$2y + 10 = -238^{\circ}, 2^{\circ}, 122^{\circ}, 362^{\circ}$		
	<i>y</i> = -124°, -4°, 56°, 176°	B1 B1	At least one correct answer All four correct and no others
		5	

Question 2 Total	10	
------------------	----	--

Q	Answer	Marks	Comments
3(a)(i)	$16(-1.5)^{3} + b(-1.5)^{2} + c(-1.5) = -45$ $16(1.25)^{3} + b(1.25)^{2} + c(1.25) = 10$	M1	One correct substitution or M1 for clear use of long division
	$\frac{9}{4}b - \frac{3}{2}c = 9$ $\frac{25}{16}b + \frac{5}{4}c = -21.25$	A1	Correct equations 3b-2c = 12 5b+4c = -68
	11 <i>b</i> = -44	m1	Attempt to solve for <i>b</i> or <i>c</i> PI by correct final answers
	b = -4 c = -12	A1	Both answers
		4	

Q	Answer	Marks	Comments
3(a)(ii)	$\left[f(x)=\right] 4x(4x+3)(x-1)$	M1 A1	M1 : $[f(x) =]kx(px+q)(rx+s)$ A1 : Any correct form, ISW
		2	

Q	Answer	Marks	Comments
3(b)	$\frac{f(x)}{16x^2 - 9} = \frac{4x(4x + 3)(x - 1)}{(4x + 3)(4x - 3)} = \frac{4x(x - 1)}{4x - 3}$	M1	or M1 for correct use of long division
	$\frac{4x^2 - 4x}{4x - 3} = x - \frac{x}{4x - 3}$	M1	PI by correct final answer
	$\left[\frac{x}{4x-3} = \frac{(4x-3)+3}{16x-12} = \frac{1}{4} + \frac{3}{16x-12}\right]$		
	$=x-\frac{1}{4}-\frac{3}{16x-12}$	A1	Condone $x - \frac{1}{4} - \frac{3}{4(4x-3)}$
		3	
			·

Question 3 Tot	I 9	
----------------	-----	--

Q	Answer	Marks	Comments
4(a)		M1	Two sections with approx. correct curvature
		A1	End points correct (approx.) and asymptote correct (approx.)
	$\begin{array}{c} O \\ -1 \end{array}$		
	· · ·	2	

Q	Answer	Marks	Comments
4(b)(i)	$f(x) = \sec x - 10x + 5$		
	f(0.6) = 0.21 f(0.7) = -0.69	M1	or reverse Both values rounded or truncated to at least 1sf
	Change of sign, $0.6 < \alpha < 0.7$	A1	Must have both statement and interval in words or symbols or comparing 2 sides: at 0.6, $\sec 0.6 > 6-5$; at 0.7, $\sec 0.7 < 7-5$ (M1) Conclusion as before (A1)
		2	

Q	Answer	Marks	Comments
4(b)(ii)	$[x_2 =] 0.621$	B1	
	$[x_3 =] 0.623$	B1	
		2	

Q		Answer	Marks	Comments
4(B1	All five correct <i>x</i> values (and no extrast
4(c)	x	У		used)
	0.61 1.22003589	PI by four correct <i>y</i> values to 3 dp		
	0.63	1.2375816	M1	At least four correct y values in exact
	0.65	1.2561492		form or as decimals which are rounde
	0.67	1.2758004		or truncated correct to 2 dp or better May be seen in a table or a formula
	0.69	1.2966031		PI by AWRT 1.2572
	0.02×(1.2	2003589+1.2375816+1.2561492 +1.2758004+1.2966031)	m1	Correct sub into formula with $h = 0.02$ oe and at least four correct <i>y</i> values either listed, with + signs, or totalled
	= 0.125723	3	A1	CAO Must see this value exactly and no
				errors made

Question 4 Total	10
------------------	----

Q	Answer	Marks	Comments
5(a)	$\left[\left(1-px\right)^{-\frac{1}{2}}=\right]$		
	$1 + \left(-\frac{1}{2}\right)(-px) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(-px)^{2}$	M1	At least 2 terms in x correct
	$+ \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{6}\left(-px\right)^{3}$		
	$=1 + \frac{1}{2}px + \frac{3}{8}p^2x^2 + \frac{5}{16}p^3x^3$	A1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
5(b)	$(4+px)^{\frac{1}{2}} = 2\left(1+\frac{px}{4}\right)^{\frac{1}{2}}$	B1	
	$= 2 \left(1 + \left(\frac{1}{2}\right) \left(\frac{px}{4}\right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)}{2} \left(\frac{px}{4}\right)^{2} + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{6} \left(\frac{px}{4}\right)^{3} \right)$ $= 2 + \frac{1}{4} px - \frac{1}{64} p^{2} x^{2} + \frac{1}{512} p^{3} x^{3}$	M1 A1	At least 2 terms in <i>x</i> correct
		3	

Q	Answer	Marks	Comments
5(c)(i)	$\begin{bmatrix} LHS = \end{bmatrix} \frac{3}{4} px + \left(2 + \frac{1}{4} px - \frac{1}{64} p^2 x^2 + \frac{1}{512} p^3 x^3\right) \\ -2\left(1 + \frac{1}{2} px + \frac{3}{8} p^2 x^2 + \frac{5}{16} p^3 x^3\right)$	M1	Use of their part (b)
	$= (2-2) + \left(\frac{3}{4} + \frac{1}{4} - 1\right) px - \left(\frac{1}{64} + \frac{3}{4}\right) p^2 x^2 + \left(\frac{1}{512} - \frac{5}{8}\right) p^3 x^3$	A1ft	Correctly collecting their x^2 terms
	$-\frac{49}{64}p^2x^2 \left[-\frac{319}{512}p^3x^3\right] = -x^2 \left[+qx^3\right]$	m1	Equating their <i>x</i> ² terms and attempting to solve
	$\left[-\frac{49}{64}p^2 = -1 \Rightarrow \right] p^2 = \frac{64}{49}$		
3	$p = \pm \frac{8}{7}$	A1	AG Must be convincingly shown
		4	

Q	Answer	Marks	Comments
5(c)(ii)	$-\frac{319}{512} \left(\pm\frac{8}{7}\right)^3 x^3 = qx^3$	M1	Equating their x^3 terms and attempting to solve PI by at least one correct value for q (which may be a truncated decimal)
	$q = \pm \frac{319}{343}$	A1	CAO
		2	

	Question 5 Total	11	
--	------------------	----	--

Q	Answer	Marks	Comments
6(a)		B1 B1 B1	Graph in first and second quadrant only Correct curvature Correct intercepts (In16, 0) and (0, 3) shown or stated Allow (2.8, 0) or better
		3	

Q	Answer	Marks	Comments
6(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0.5 \mathrm{e}^{0.5x}$	M1	$k e^{0.5x}$
	When $x = \ln 25$ $\frac{dy}{dy} = 0.5 \times \ln 25$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0.5 \mathrm{e}^{0.5 \times \ln 25}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 0.5 \mathrm{e}^{\ln 5}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2.5$	A1	ое
	When $x = \ln 25$		
	$y = \left e^{0.5 \ln 25} - 4 \right = 1$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x_{\text{normal}}} = -\frac{2}{5}$	M1	M1 for the negative reciprocal of their 2.5
	$y-1=-\frac{2}{5}(x-\ln 25)$		
	$2x+5y=5+2\ln 25$	A1	ое
		5	

Q	Answer	Marks	Comments
6(c)	$x = 0, \ y = \frac{(5 + \ln 625)}{5}$ $y = 0, \ x = \frac{(5 + \ln 625)}{2}$	M1	Either correct
	$A = \frac{1}{2} \times \frac{(5 + \ln 625)}{5} \times \frac{(5 + \ln 625)}{2}$	M1	
	$A = \frac{1}{20} \left(5 + \ln 625 \right)^2$	A1	oe, e.g. $A = \frac{1}{5} \left(\frac{5}{2} + \ln 25 \right)^2$ or $A = \frac{4}{5} \left(\frac{5}{4} + \ln 5 \right)^2$
		3	
	Question 6 Total	11	

Q	Answer	Marks	Comments
7(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} -3\\ -2\\ 7 \end{bmatrix}$	B1	
		1	

Q	Answer	Marks	Comments
7(a)(ii)	$\left \overrightarrow{AB}\right = \sqrt{\left(-3\right)^2 + \left(-2\right)^2 + 7^2}$	M1	
	= $\sqrt{62}$	A1	
		2	

Q	Answer	Marks	Comments
7(a)(iii)	$\begin{bmatrix} 1\\-2\\-3\end{bmatrix} \cdot \begin{bmatrix} -3\\-2\\7\end{bmatrix} = -20$	M1	PI by –20 seen or used
	$\cos\theta = \frac{\begin{bmatrix} 1\\-2\\-3\end{bmatrix} \cdot \begin{bmatrix} -3\\-2\\7\end{bmatrix}}{\sqrt{62} \times \sqrt{1^2 + 2^2 + 3^2}}$	M1	
	<i>θ</i> = 132.75°		
	$[\Rightarrow acute angle =] 47.2^{\circ}$	A1	
		3	

Q	Answer	Marks	Comments
7(a)(iv)	The line <i>AB</i> has vector equation $\mathbf{r} = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix} + \mu \begin{bmatrix} -3 \\ -2 \\ 7 \end{bmatrix}$		
	$4 + \lambda = 1 - 3\mu$	M1	
	$4 + \lambda = 1 - 3\mu$ -1-2 $\lambda = 5 - 2\mu$ $\mu = 0, \ \lambda = -3$ -3 = $c + (-3)(-3)$ c = -12	A1	
	<i>c</i> = -12	A1	
		3	

Q	Answer	Marks	Comments
7(b)(i)	$\begin{bmatrix} 4+p \\ -1-2p \\ -12-3p \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix} = 0$ 4+p+2+4p+36+9p = 0 n = -2	M1	
	p3	A1	
	$ OP = \sqrt{1^2 + 5^2 + (-3)^2}$ = $\sqrt{35}$	m1	
	$=\sqrt{35}$	A1	
		4	

Q	Answer	Marks	Comments
7(b)(ii)	$ OB = \sqrt{29}$	B1	2 oe Note, shortest distance from line AB to origin is $\frac{13\sqrt{93}}{31} = 4.044$
	The shortest distance from l to the origin is $\sqrt{35}$, so the line <i>AB</i> must be nearer	E1ft	ft their $\sqrt{35}$ and their equivalent of $\sqrt{29}$ with a consistent conclusion
		2	

Question 7 Tota	15	
-----------------	----	--

Q	Answer	Marks	Comments
8	$1 + \frac{\mathrm{d}y}{\mathrm{d}x} = 2\left(x - 2y\right)\left(1 - 2\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	M1 A1	M1: LHS or RHS correct A1: Both correct $\begin{bmatrix} \frac{dy}{dx} (1+4(x-2y)) = 2(x-2y) - 1 \\ \frac{dy}{dx} = \frac{2(x-2y) - 1}{(1+4(x-2y))} \text{oe} \end{bmatrix}$
	At (2, 2) $1 + \frac{dy}{dx} = -4 + 8 \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{5}{7}$	M1 A1	Attempt to find $\frac{dy}{dx}$
	$\frac{dy}{dx} = \frac{5}{7}$ $y = \frac{5}{7}x + c$ $2 = \frac{5}{7} \times 2 + c$ $c = \frac{4}{7}$ $y = \frac{5}{7}x + \frac{4}{7}$	m1	Attempt to find <i>c</i>
	$y = \frac{5}{7}x + \frac{4}{7}$	A1	
		6	
	Question 8 Total	6	

Q	Answer	Marks	Comments
9(a)	Stretch +either I or IIParallel to x -axisISF 0.5II	M1 A1	or Translation $\begin{bmatrix} 0\\k \end{bmatrix}$ M1 $k = \ln 2$ A1
		2	

Q	Answer	Marks	Comments
9(b)	$V = \pi \int_{0.5}^{4} \left(\ln \left(2x \right) \right)^2 \mathrm{d}x$	B1	Complete correct statement
	$u = \left(\ln\left(2x\right)\right)^2, \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1	Attempt at parts
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2\ln\left(2x\right) \times \frac{1}{x}, v = x$	A1	All 4 terms correct
	$\int \ln(2x)^2 dx = x \left(\ln(2x)\right)^2 - \int x \times \frac{2\ln(2x)}{x} dx$	m1	Correct substitution into parts formula
	$\int \ln(2x) \mathrm{d}x$		
	$u = \ln(2x), \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1	Attempt at parts
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}, v = x$		
	$\int \ln(2x) \mathrm{d}x = x \ln(2x) - \int x \times \frac{1}{x} \mathrm{d}x$	m1	Correct substitution into parts formula
	$=x\ln 2x-x$	A1	
	$\left[\int \ln(2x)^2 dx = x(\ln(2x))^2 - 2x\ln(2x) + 2x\right]$		
	$V = \pi \int_{0.5}^{4} \ln \left(2x\right)^2 \mathrm{d}x$		
	$=\pi \Big(4 \big(\ln 8\big)^2 - 8\ln 8 + 8 - 1\Big)$	M1	Subst limits into their expression (must be in form $ax(\ln(2x)^2) + bx\ln(2x) + cx$)
	$=\pi\Big(4\big(\ln 8\big)^2-8\ln 8+7\Big)$	A1	ACF eg $\pi (36(\ln 2)^2 - 24\ln 2 + 7)$
		9	

Question 9 Tota	I 11	
-----------------	------	--

Q	Answers	Marks	Comments
10	$\int \frac{\mathrm{d}y}{(3a-2y)(a-y)} = \int b \mathrm{d}x$	M1	Separate variables
	$\frac{1}{(3a-2y)(a-y)} = \frac{A}{3a-2y} + \frac{B}{a-y}$	M1	Use of partial fractions
	1 = A(a - y) + B(3a - 2y) $A = -\frac{2}{3}, B = \frac{1}{3}$	A1	
	$ \frac{a}{a}, b = a \\ -\frac{2}{a} \times \left(\frac{1}{-2}\right) \ln(3a - 2y) + \frac{1}{a} \times (-1) \ln(a - y) = bx + c \\ x = 0, y = 0 $	M1 A1	M1 : Attempt to integrate A1 : Fully correct integration
	$\frac{1}{a}\ln 3a - \frac{1}{a}\ln a = c$	m1	Attempt to find <i>c</i>
	$c = \frac{1}{a} \ln 3$	A1	
	$\begin{bmatrix} \ln\left(\frac{3a-2y}{a-y}\right) = abx + \ln 3\\ \ln\left(\frac{2y-3a}{3(y-a)}\right) = abx \end{bmatrix}$		
	$\left[\ln \left(\frac{2y - 3a}{3(y - a)} \right) = abx \right]$		
	$\frac{2y-3a}{3(y-a)} = e^{abx}$	M1	Eliminates logarithms
	$2y-3a = 3y e^{abx} - 3a e^{abx}$ $y(2-3e^{abx}) = 3a(1-e^{abx})$	M1	Attempt to find <i>y</i>
	$y(2-3e^{-abx}) = 3a(1-e^{-abx})$ $y = \frac{3a(1-e^{-abx})}{2-3e^{-abx}}$	A1	oe
	$2-3e^{\omega x}$	10	

n 10 Total 10	10	Question 10 Total	
---------------	----	-------------------	--

Q	Answer	Marks	Comments
11(a)	$\begin{bmatrix} \cos 2\theta = 2\cos^2 \theta - 1 \end{bmatrix}$ $\int 4\cos^2 \theta d\theta = \int (2\cos 2\theta + 2) d\theta$ $= \sin 2\theta + 2\theta [+c]$	M1A1	M1 for $a \sin 2\theta + b\theta$ A1 correct with no errors seen
		2	

Q	Answer	Marks	Comments
11(b)	$t = \sin x, \mathrm{d}t = \cos x \mathrm{d}x$	B1	ое
	$\begin{bmatrix} t \end{bmatrix}_{0}^{\frac{1}{2}} = \begin{bmatrix} \sin x \end{bmatrix}_{0}^{\frac{\pi}{6}} \\ \int \frac{\sin 2x}{3 + \cos^{2}x} dx = \int \frac{2t}{4 - t^{2}} dt$	B1	Change of limits
	$\int \frac{\sin 2x}{3 + \cos^2 x} dx = \int \frac{2t}{4 - t^2} dt$	M1	
	$\int \frac{2t}{4-t^2} dt = -\ln(4-t^2)$	m1 A1	m1: $k \ln(4-t^2)$ A1: Correct, or $-\ln(2-t) - \ln(2+t)$ oe
	$= -\ln\left(4 - \frac{1}{4}\right) - \left(-\ln(4)\right)$	M1	Substituting into $k \ln(4-t^2)$ oe
	$=\ln\left(\frac{16}{15}\right)$	A1	
		7	

Question 11 To	al 9	
----------------	------	--

Q	Answer	Marks	Comments
12(a)	$\cos\theta = \frac{x}{2}, \sin\theta = \frac{y}{3}$	M1	
	$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$	A1	ое
		2	

Q	Answer	Marks	Comments
12(b)	$\theta = \frac{\pi}{6}, x = \sqrt{3}, y = \frac{3}{2}$ $\frac{dx}{d\theta} = -2\sin\theta \frac{dy}{d\theta} = 3\cos\theta$	B1	$\left[\frac{2x}{4} + \frac{2y}{9}\frac{dy}{dx} = 0\right]$
	$\frac{dy}{dx} = -\frac{3\cos\theta}{2\sin\theta} \left[= -1.5\cot\theta \right]$	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9x}{4y}$
	$\theta = \frac{\pi}{6}, \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3\sqrt{3}}{2}$	A1	PI
	$y - 1.5 = -\frac{3\sqrt{3}}{2} \left(x - \sqrt{3} \right)$		
	$y + \frac{3\sqrt{3}}{2}x - 6 = 0$	A1	
		4	

Q	Answer16	Marks	Comments
12(c)	$xy = k^2 \implies y = \frac{k^2}{r}$	M1	$xy = k^2 \implies x = \frac{k^2}{y}$
	$\left \frac{x^2}{4} + \left(\frac{k^2}{3x}\right)^2 = 1\right $		$\frac{k^4}{4y^2} + \frac{y^2}{9} = 1$
	$9x^{4} + 4k^{4} = 36x^{2}$ $9x^{4} - 36x^{2} + 4k^{4} = 0$	A1	$9k^4 + 4y^4 = 36y^2$ $4y^4 - 36y^2 + 9k^4 = 0$
	$(-36)^2 - 4 \times 9 \times 4k^4 > 0$	B1	$(-36)^2 - 4 \times 9 \times 4k^4 > 0$
	$x^2 = 2 \pm \frac{2}{3}\sqrt{9-k^4}$	M1	$y^2 = \frac{9}{2} \pm \frac{3}{2} \sqrt{9 - k^4}$
	Given that k is positive, for x^2 to have two distinct positive real values then		Given that k is positive, for y^2 to have two distinct positive real values then
	$x^{2} = 2 + \frac{2}{3}\sqrt{9 - k^{4}} > 0 \implies k^{2} < 3$		$y^{2} = \frac{9}{2} + \frac{3}{2}\sqrt{9 - k^{4}} > 0 \implies k^{2} < 3$ or
	or $x^{2} = 2 - \frac{2}{3}\sqrt{9 - k^{4}} > 0 \implies k^{2} < 3$		$y^2 = \frac{9}{2} - \frac{3}{2}\sqrt{9 - k^4} > 0 \implies k^2 < 3$
	$\therefore k^2 < 3$		$\therefore k^2 < 3$
	then there will be 4 distinct points of intersection.	A1	then there will be 4 distinct points of intersection.
			ое
		5	

Question 12 Total 11		Question 12 Total	11	
----------------------	--	-------------------	----	--