

INTERNATIONAL AS MATHEMATICS MA01

(9660/MA01) Unit P1 Pure Mathematics

Mark scheme

January 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

-x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)(i)	7	B1	
		1	

Q	Answer	Marks	Comments
1(a)(ii)	-35	B1	
		1	

Q	Answer	Marks	Comments
1(b)	$[y =] ((-x)-7)^{2}-35$ or $[y =] (-x)^{2}-14(-x)+49-35$ or $[y =] (x+7)^{2}-35$ or $[y =] x^{2}+14x+49-35$	M 1	Substitutes $-x$ for x in the equation of C or forms the completed square form of the equation using the vertex $\left(-7, -35\right)$ of D $\left(-x\right)^2$ may be PI by x^2
	$y = x^2 + 14x + 14$	A 1	CAO
		2	

	Question 1 Total	4	
--	------------------	---	--

Q	Answer	Marks	Comments
2(a)	$a = \frac{1}{2}$ or 0.5	B1	
	either $3^{13a-8b} = 3^4 \text{or} 13a-8b=4 \textbf{oe}$ or $\frac{13}{2}^{-8b} = 3^4 \text{or} \frac{13}{2} - 8b = 4 \textbf{oe}$	M 1	PI Either Uses power rules to form an equation in a and b or Substitutes their value of a and uses power rules to form an equation in b
	$b = \frac{5}{16}$ or 0.3125	A1ft	ft their a with $b = \frac{13a - 4}{8}$
		3	

Q	Answer	Marks	Comments
2(b)	$\left[\sqrt[4]{16x^{12}y^8} = \right] 2x^3y^2$	B1	oe Possibly $2x^{\frac{12}{4}}y^{\frac{8}{4}}$ Correctly writes as a product of powers PI by correct final answer
	kx^8y^{-7} or $12x^my^{-7}$ or $12x^8y^n$	М1	Use of power rules to write as the product of an integer and powers of x and y Two terms correct in their product
	$12x^8y^{-7}$	A 1	CAO Condone $\pm 12x^8y^{-7}$
		3	

Question 2 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	$[f(6)] = 6^3 + 9 \times 6^2 + 15 \times 6 + k$	M1	oe $f(6)$ attempted Terms may be partially evaluated Must include k PI by later working
	216 + 324 + 90 + k = 605 oe and $k = -25$	A 1	$\begin{array}{l} \textbf{AG CSO} \ f\left(6\right) \ \text{with powers and} \\ \text{products evaluated set equal to 605} \\ \text{(or better) leading to the required} \\ \text{result} \\ \text{Remainder Theorem not used scores} \\ \textbf{M0A0} \end{array}$
		2	

Q	Answer	Marks	Comments
3(b)(i)	c = 25	B1	
		1	

Q	Answer	Marks	Comments
3(b)(ii)	$\left[b^2 - 4ac = 0 \Rightarrow\right] b^2 - 4 \times 1 \times 25 = 0$	M1	Discriminant clearly used and set equal to zero. ft their ℓ Condone $b^2 - 4 \times 25 = 0$ or $b^2 - 100 = 0$ or $b^2 = 100$
	b = 10	A 1	Discriminant not used scores M0A0 Final answer of $b = \pm 10$ scores M1A0
		2	

Q	Answer	Marks	Comments
3(c)		B1	Correct positive cubic graph with two vertices and maximum tangential to the <i>x</i> -axis and minimum in the 3rd quadrant
	See artwork below	B1	Correct coordinates of both <i>x</i> -intercepts. Condone given as values rather than coordinates
		B1	Correct coordinates of <i>y</i> -intercept. Condone given as value rather than coordinates
		(1, 0)	$\stackrel{\star}{x}$
	Question 3 Total	8	

Q	Answer	Marks	Comments
4(a)	a + 2d = 2(a + 18d)		
	or	M1	oe Correct equation relating a and d in Month 3 and Month 19
	a + 2d = 2a + 36d		
	a + 13d = 252	M1	oe Correct equation in <i>a</i> and <i>d</i> for the number of cars produced in Month 14
	<i>a</i> = 408	A 1	CAO
	<i>d</i> = −12	A 1	CAO
		4	

Q	Answer	Marks	Comments
4(b)	$\frac{1}{2} \times 34(2 \times 408 + (34 - 1) \times (-12))$		
	or		
	$408 + (34 - 1) \times (-12)$ [= 12]	M1	oe ft their <i>a</i> and <i>d</i> from part (a) seen substituted
	and		
	$\frac{1}{2} \times 34 \times (408 + 12)$		
	7140	A 1	CAO
		2	

Question 4 Tota	6	
-----------------	---	--

Q	Answer	Marks	Comments
5(a)	[Gradient of $l_1 = \frac{3}{5}$	B1	PI in later working.
	$\frac{k - (-2)}{18 - 3} = \frac{3}{5}$ or $\left[y - (-2) = \frac{3}{5}(x - 3) \Rightarrow \right]$ $k + 2 = \frac{3}{5}(18 - 3)$	M1	 oe Uses the coordinates of A and C to form an expression equal to their gradient or oe Substitutes the coordinates of C into the equation of the line through A and C
	5k + 10 = 45 oe and $k = 7$	A 1	CSO AG Must be clear line of working before required result stated
		3	

Q	Answer	Marks	Comments
5(b)(i)	$[CE =] \sqrt{(18-13)^2 + (7-4)^2} = [=\sqrt{34}]$	M1	oe PI Forms an expression for the length or the square of the length of CE
	$\left(2\sqrt{17}\right)^2 = \left(\sqrt{34}\right)^2 + \left(BE\right)^2$	M1	oe Applies Pythagoras' Theorem to triangle <i>BCE</i>
	$(BE)^2 = 68 - 34 = 34$ $BE = CE \left[= \sqrt{34} \right]$	A 1	CSO Extra line of working and concludes $BE=CE$ Extra line of working could be $BE=\sqrt{34}$ if it comes from correct working.
		3	

Q	Answer	Marks	Comments
5(b)(ii)	Use of: (Translation E to B) $ \begin{bmatrix} -3 \\ 5 \end{bmatrix} $ or (Translation E to D) $ \begin{bmatrix} 3 \\ -5 \end{bmatrix} $	M1	Use of translation or equivalent to find: correct coordinates for <i>B</i> or <i>D</i> or both correct <i>x</i> -coordinates for <i>B</i> and <i>D</i> or both correct <i>y</i> -coordinates for <i>B</i> and <i>D</i>
	B(10, 9)	A 1	
	B(10, 9) D(16,-1)	A 1	SC2 for both correct coordinates but incorrectly identified
		3	

Q	Answer	Marks	Comments
5(b)(iii)	$m'=-\frac{5}{3}$	B1ft	Correct gradient of l_2 ft their gradient of l_1 from part (a) Possibly embedded in later working
	$\frac{y-4}{x-13} = -\frac{5}{3}$	M1	ft their gradient of l_1 from part (a) May use coordinates of B , D or E May see $y = -\frac{5}{3}x + p$ and substitution of coordinates of B , D or E to find p but must be a complete method
	$5x + 3y = 77$ or $y = -\frac{5}{3}x + \frac{77}{3}$	A 1	oe Correct equation
	$\left(\frac{17}{2},\frac{23}{2}\right)$	m1, A1	 m1 solving equations simultaneously to obtain one correct value for x or y A1 for correct coordinates Accept decimal equivalents Accept if not given as coordinates but must be clearly identified
		5	

Question 5 Total	14	
------------------	----	--

Q	Answer	Marks	Comments
6(a)(i)	P is a minimum point since $\frac{d^2y}{dx^2} > 0$	E1	States that it is a minimum point and indicates that the second derivative is positive
		1	

Q	Answer	Marks	Comments
6(a)(ii)	$[4x-5=11 \Longrightarrow] x=4$	M1	PI May be seen embedded in expression for first derivative. Correct <i>x</i> -coordinate of <i>P</i>
	$2\times4^2-5\times4+d=0$ 0e and $d=-12$	A 1	AG CSO Substitutes $x = 4$ into the expression for the first derivative and sets equal to zero before required result stated
		2	

Q	Answer	Marks	Comments
6(b)	m = 30	B1	Correct gradient of tangent at Q seen or used.
	$[2a^{2} - 5a - 12 = 30]$ $2a^{2} - 5a - 42 = 0$	M1	Forms quadratic equation set equal to zero, using $m=\pm 30$ PI by $a=6$ or correct x -coordinate of Q
	[(2a+7)(a-6)=0] $a=6$	A 1	CAO Correct <i>x</i> -coordinate of Q Ignore if $a = -\frac{7}{2}$ given as well
	$\left[\int (2x^2 - 5x - 12) dx = \right]$ $\frac{2}{3}x^3 - \frac{5}{2}x^2 - 12x + c$	B2,1	B2 for fully correct integration B1 for two correct terms Condone + <i>c</i> omitted. Simplified or unsimplified.
	$\frac{2}{3}(6)^3 - \frac{5}{2}(6)^2 - 12 \times 6 + c = 14$	M1	oe Substitutes $x = 6$ into their integral and sets equal to 14 in an attempt to evaluate c . Must have $+c$ term ft their $a = 6$
	$y = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 12x + 32$	A 1	CAO
		7	

Q	Answer	Marks	Comments
7(a)	h = 1	B1	PI in later working
	$\left[I \approx \frac{h}{2} \{\}\right]$ $\{\} = \frac{k}{2} + \frac{k}{6} + 2\left(\frac{k}{3} + \frac{k}{4} + \frac{k}{5}\right)$	M1	oe
	$\frac{k}{2} \left(\frac{1}{2} + \frac{1}{6} + 2 \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) \right) = 14.07$ or $\frac{67k}{60} = 14.07$	M 1	oe Sets equal to 14.07 and correctly factorises out k or forms correct equation with one term in k
	$k = 12.6$ or $\frac{63}{5}$	A 1	CAO
		4	

Q	Answer	Marks	Comments
7(b)(i)	Over-estimate	E1	Over-estimate stated
	The tops of the trapezia/strips are above the curve	E1	Any valid explanation, such as 'convex' or 'concave upwards' E0E1 not possible.
		2	

Q	Answer	Marks	Comments
7(b)(ii)	Increase the number of strips/ordinates/trapezia	E1	Valid explanation Condone 'make h smaller' oe
		1	

Question 7 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
8(a)(i)	$[f'(x) =] 3x^2 - 12x + 57$	B1	Correct derivative
		1	

Q	Answer	Marks	Comments
8(a)(ii)	$(x-2)^2$	M1	
	$3(x-2)^2-12+57$	A 1	PI Allow $3((x-2)^2-4)+57$ $3((x-2)^2-4+19)$ $3((x-2)^2+15)$
	$3(x-2)^2+45$	A 1	CAO
	$(x-2)^2 \ge 0$ [for all real values of x]	E1ft	PI by, for example, $f'(x) \ge 45$ or a statement that implies that the curve of $f'(x)$ is always on or above the line $y = 45$, such as $(2, 45)$ is a minimum ft their $(x+b)^2$ Condone $3(x-2)^2$ 3 0
	$ [f'(x) =] 3(x-2)^2 + 45 > 0 $ [for all real values of x] and hence f is increasing [for all x]	E1ft	ft their $a(x+b)^2+c$ provided a and c are both positive Statement saying $f'(x)$ is positive for all x and concluding statement $3(x-2)^2+45\geq 0 \text{ scores E0}$ (Possible to award E0E1)
		5	

Q	Answer	Marks	Comments
8(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{3}{8}x^{\frac{1}{2}} - 8x^{-\frac{3}{2}}$	B1	Correct derivative simplified or unsimplified
	$\frac{3}{8}(16)^{\frac{1}{2}} - 8(16)^{-\frac{3}{2}}$	M1	Substitutes $x = 16$ into their derivative. May be partially evaluated
	$m = \frac{11}{8}$ or 1.375	A 1	Correct gradient of tangent
	$y - 13 = \frac{11}{8}(x - 16)$	m1	oe Forms correct equation for the tangent at <i>P</i> ft their gradient
	$\left(\frac{72}{11},0\right)$	A 1	Must be exact value of <i>x</i> -coordinate. Condone not given as coordinates if clearly identified
		5	

T		
Question 8 Total	11	
Question 6 Total	- 11	

Q	Answer	Marks	Comments
9	$na = -\frac{14}{5}$	В1	Condone $-\frac{14}{5} = -2.8$ PI by correct subsequent substitution seen
	$\frac{n(n-1)}{2}a^2 = \frac{84}{25}$	В1	oe, eg $\frac{(na)^2 - (na)a}{2} = \frac{84}{25}$ and $\frac{196}{25} + \frac{14}{5}a = \frac{168}{25}$ Condone $\frac{84}{25} = 3.36$ Condone $a = -\frac{14}{5n}$ substituted
	$\left[a = -\frac{14}{5n} \Longrightarrow\right] \frac{n(n-1)}{2} \times \left(-\frac{14}{5n}\right)^2 = \frac{84}{25}$	M1	oe Correct substitution for a into their $\frac{n(n-1)}{2}a^2 = \frac{84}{25}$
	$\frac{98n(n-1)}{n^2} = 84$ oe and $98(n-1) = 84n$ oe and $n = 7$	A 1	CSO AG Be convinced.
	$a = -\frac{2}{5}$	В1	CAO Condone $a = -0.4$
	$\frac{7(7-1)(7-2)}{6} \times \left(-\frac{2}{5}\right)^3 = -b \text{oe}$ or $\binom{7}{3} \times \left(-\frac{2}{5}\right)^3 = -b \text{oe}$	М1	Correct substitution of $n = 7$ and their a
	$\binom{7}{3} \times \left(-\frac{2}{5}\right)^3 = -b \mathbf{oe}$ $b = \frac{56}{25} \text{or} 2.24$	A 1	CAO If $n = 7$ assumed then SC1 for correct a and SC2 for correct b
		7	

Q	Answer	Marks	Comments
9 ALT	$na = -\frac{14}{5}$	B1	Condone $-\frac{14}{5} = -2.8$ PI by correct subsequent substitution seen
	$\frac{n(n-1)}{2}a^2 = \frac{84}{25}$	B1	oe Condone $\frac{84}{25} = 3.36$ Condone $n = -\frac{14}{5a}$ substituted
	$\left[n = -\frac{14}{5a} \Rightarrow \right] \frac{\left(-\frac{14}{5a}\right)\left(-\frac{14}{5a} - 1\right)}{2} \times a^2 = \frac{84}{25}$ or $\frac{14(14 + 5a)}{25a^2} \times a^2 = \frac{168}{25}$ or $14(14 + 5a) = 168$	M 1	oe Correct substitution for n into their $\frac{n(n-1)}{2}a^2 = \frac{84}{25}$ PI by elimination of n with $a = \frac{na^2}{na}$ where $na^2 = \frac{28}{25}$
	$a = -\frac{2}{5}$	A1	CAO Condone $a = -0.4$
	$-\frac{2}{5}n = -\frac{14}{5} \text{ and } n = 7$ or $n = -\frac{14}{5a} \text{ seen, } a = -\frac{2}{5} \text{ and } n = 7$	В1	AG Be convinced
	$\begin{vmatrix} \frac{7(7-1)(7-2)}{6} \times \left(-\frac{2}{5}\right)^3 = -b \text{oe} \\ \text{or} \\ \left(\frac{7}{3}\right) \times \left(-\frac{2}{5}\right)^3 = -b \text{oe} \end{vmatrix}$	M 1	Correct substitution of $n = 7$ and their a
	$b = \frac{56}{25}$	A 1	CAO Condone $\frac{56}{25} = 2.24$
		7	

	Question 9 Total	7	
Q	Answer	Marks	Comments
10(a)	$\left[r=\right]\frac{8-x}{12}$	B1	Correct expression for the common ratio. PI in later working
	$-1 < \frac{8-x}{12} < 1$ or $-12 < 8-x < 12$	М1	 oe Use of condition for convergence of an infinite geometric series to form an inequality. Accept 8 - x < 12
	-4 < <i>x</i> < 20	A 1	CAO Condone $x > -4$ and $x < 20$ but not $x > -4$ or $x < 20$
		3	

Q	Answer	Marks	Comments
	$S_{\infty} = \frac{12}{1 - \frac{8 - x}{12}}$ or $S_{\infty} = \frac{144}{4 + x}$	B1ft	PI oe Expression for S_{∞} in terms of x ft their r from part (a) PI by use of $\frac{12}{1-r}$ with $r=-1$ or $r=\frac{2}{3}$
	$\left[x = 0 \Longrightarrow S_{\infty} = \right] \frac{144}{4+0} \left[= 36 \right]$	M1	oe Attempt to evaluate S_{∞} at $x = 0$
	$\left[x < 20 \Longrightarrow S_{\infty} = \frac{144}{4+x} > \right] 6$	M1	oe Use of $x = 20$ with $\frac{8-x}{12}$ to find the corresponding critical value ft their $x = 20$ from part (a) provided it is positive
	$6 < S_{\infty} < 36$	A 1	CAO Condone $S_{\infty} > 6$ and $S_{\infty} < 36$ but not $S_{\infty} > 6$ or $S_{\infty} < 36$
		4	

Question 10 Total	7	
-------------------	---	--