

INTERNATIONAL A-LEVEL MATHEMATICS

MA03

(9660/MA03) Unit P2 Pure Mathematics

Mark scheme

January 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

MARK SCHEME - INTERNATIONAL A-LEVEL MATHEMATICS - MA03 - JANUARY 2021

Q	Answer	Marks	Comments
1(a)	$h(x) = \frac{25}{x+4} - 5$	M1	
	$h(x) = \frac{5 - 5x}{x + 4}$	A1	
		2	

Q	Answer	Marks	Comments
1(b)(i)	$x = \frac{5 - 5y}{y + 4}$	M1	'Swap' <i>x</i> and <i>y</i>
	xy + 4x = 5 - 5y	M1	Attempt to rearrange <i>their</i> (a)
	xy + 4x = 5 - 5y $[y = h^{-1}(x) =]\frac{5 - 4x}{x + 5}$	A1	oe
		3	

Q	Answer	Marks	Comments
1(b)(ii)	[All values of $h^{-1}(x)$], $[h^{-1}(x)] \neq -4$	B1	
		1	

Q	Answer	Marks	Comments
2(a)(i)	$4 - \lambda = -1 - \mu$ $-2 + 5\lambda = 5 - 4\mu$	M1	
	$4 - \lambda = -1 - \mu$ -2 + 5 λ = 5 - 4 μ λ = 3, μ = -2	A1	
	$-3 + 2\lambda = 11 + \mu c$ $c = 4$	A1	
		3	

Q	Answer	Marks	Comments
2(a)(ii)	(1, 13, 3)	B1F	Must be coordinates – not a column vector
		1	

Q	Answer	Marks	Comments
2(b)	$\begin{pmatrix} -1\\5\\2 \end{pmatrix} \begin{pmatrix} -1\\-4\\c \end{pmatrix} = 0$ $1-20+2c=0$ $c=9.5$	M1 A1 A1	
	c = 9.5	AI	oe
		3	

Question 2 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
3(a)	$[3\sin\theta - 3\cos\theta =]$ $R\sin\theta\cos\alpha - R\cos\theta\sin\alpha$	M1	Seen or used
	$R = \sqrt{18}$ $\alpha = 45^{\circ}$	A1	Both correct
		2	

Q	Answer	Marks	Comments
3(b)(i)	$\left[y_{\max}^2=\right]18$	B1	
		1	

Q	Answer	Marks	Comments
3(b)(ii)	$\left[y_{\min}^2=\right]0$	B1	
		1	

Q	Answer	Marks	Comments
3(b)(iii)	$\sqrt{18}\sin(\theta - 45) = -\frac{3\sqrt{6}}{2}$		
	$\sin(\theta - 45) = -\frac{\sqrt{3}}{2}$	M1	Ы
	$\theta - 45 = -60, -120$ $\theta = -15, -75$		
	$\theta = -15, -75$	A1+A1	
		3	

Question 3 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
4(a)	Stretch + either I or II Parallel to <i>y</i> -axis I	M1	
	SF 2 II Followed by	A1	Including correct terminology
	Translation $\begin{bmatrix} 0\\k \end{bmatrix}$	M1	
	<i>k</i> = 1	A1	Including correct terminology
4(a) ALT	Translation $\begin{bmatrix} 0\\k \end{bmatrix}$	(M1)	Including correct terminology
	k = 0.5 Followed by	(A1)	
	Stretch in <i>y</i> -direction SF 2	(M1) (A1)	Including correct terminology
		4	

Q	Answer	Marks	Comments
4(b)	$-\pi$ O π x	B1 B1	Correct shape, symmetric about <i>y</i> -axis (ignore graph outside the given range) y = 3 indicated or stated
		2	

Q	Answer	Marks	Comments
4(c)	$[Vol =] \pi \int_{-\frac{2\pi}{3}}^{\frac{2\pi}{3}} (1 + 2\cos x)^2 dx$	B1	Including π , correct limits and d x
	$(1+2\cos x)^2 = 1+4\cos x + 4\cos^2 x$	B1	РІ
	$[V = \pi \int 1 + 4\cos x + 2\cos 2x + 2dx]$	M1	Attempt at integration, must be in form $ax + b \sin x + c \sin 2x$
	$= [\pi] (3x + 4\sin x + \sin 2x)$	A1	
	$= [\pi] \{ (2\pi + 2\sqrt{3} - \frac{\sqrt{3}}{2}) - (-2\pi - 2\sqrt{3} + \frac{\sqrt{3}}{2}) \}$	m1	Attempt at subst correct limits
	$[V=] \pi(4\pi + 3\sqrt{3})$	A1	
		6	

		12	Question 4 Total
--	--	----	------------------

Q	Answer	Marks	Comments
5(a)	$(1+x^2)^{0.5} = 1+0.5(x^2) + \frac{0.5 \times -0.5}{2}(x^2)^2$	M1	$1 + ax^2 + bx^4$
	$=1+0.5x^2-0.125x^4$	A1	oe
		2	

Q	Answer	Marks	Comments
5(b)	$\int_{0}^{0.5} \sqrt{1+x^2} dx = \int 1 + 0.5x^2 - 0.125x^4 dx$		
	$= x + \frac{1}{6}x^3 - \frac{1}{40}x^5$	M1 A1	$x + cx^3 + dx^5$
	$\int_{0}^{0.5} = 0.5 + \frac{1}{6} \times 0.5^{3} - \frac{1}{40} \times 0.5^{5}$ $= 0.52005$	m1 A1	Attempt at subst correct limits
		4	

5(c) x y 0 $\sqrt{1+0^2} = 1$ 0.125 0.125 $\sqrt{1+0.25^2} = 1.007782$ 0.25 $\sqrt{1+0.25^2} = 1.0307764$ 0.375 $\sqrt{1+0.375^2} = 1.068000$ 0.5 $\sqrt{1+0.5^2} = 1.118034$ $\frac{1}{3} \times 0.125 \times$ [1+1.118034+2(1.0307764)+4(1.007782+1.068000)] = 0.52011 A1 CAO, must see this value exactly and no error seen	Q	Answer	Marks	Comments
$\frac{1}{0.25} + \frac{\sqrt{1+0.125} = 1.007782}{\sqrt{1+0.25^2} = 1.0307764}$ $\frac{1}{0.375} + \sqrt{1+0.375^2} = 1.068000$ $\frac{1}{0.5} + \sqrt{1+0.5^2} = 1.118034$ $\frac{1}{3} \times 0.125 \times$ $\frac{1}{3} \times 0.125 \times$ $\frac{1}{1+1.118034 + 2(1.0307764) + 4(1.007782 + 1.068000)]}{(1+1.118034 + 2(1.0307764) + 4(1.007782 + 1.068000)]}$ $m1$ $\frac{1}{2} \times 0.125 \times$ $\frac{1}{3} \times 0.125 \times$ $\frac{1}$	5(c)	$\frac{1}{\sqrt{1+0^2}} = 1$	B1	extra used)
$\frac{1}{0.5} \frac{\sqrt{1+0.575} = 1.068000}{\sqrt{1+0.5^2} = 1.118034}$ $\frac{1}{3} \times 0.125 \times $ $[1+1.118034+2(1.0307764)+4(1.007782+1.068000)]$ $= 0.52011$ M1 Previous correct previous of the original or the original original or the original origina		$\begin{array}{c cccc} & \sqrt{1+0.125} &=& 1.007782 \\ \hline 0.25 & \sqrt{1+0.25^2} &=& 1.0307764 \end{array}$		
$\begin{bmatrix} 1+1.118034+2(1.0307764)+4(1.007782+1.068000) \end{bmatrix}$ $= 0.52011$ $= 0.52011$ $\begin{bmatrix} 1+1.118034+2(1.0307764)+4(1.007782+1.068000) \end{bmatrix}$ $= 0.125 \text{ OE and at least rout correct}$ $y \text{ values either listed, with + signs, or totalled}$ $= 0.52011$ $A1$ $\begin{bmatrix} CAO, must see this value exactly and no error seen \end{bmatrix}$		$0.5 \sqrt{1+0.5^2} = 1.088000$	M1	exact form or decimals, rounded or truncated to 3 dp or
and no error seen				0.125 OE and at least four correct y values either listed, with + signs,
4		= 0.52011	A1	-
			4	

|--|

Q	Answer	Marks	Comments
6(a)	$\tan \beta = \tan(45 - \alpha)$ $= \frac{\tan 45 - \tan \alpha}{1 + \tan 45 \tan \alpha}$ $= \frac{1 - \tan \alpha}{1 + \tan \alpha}$	M1 A1	PI
		2	

Q	Answer	Marks	Comments
6(b)	$(1 + \tan \alpha)(1 + \tan \beta)$ $= (1 + \tan \alpha)(1 + \frac{1 - \tan \alpha}{1 + \tan \alpha})$ $= (1 + \tan \alpha)(\frac{1 + \tan \alpha + 1 - \tan \alpha}{1 + \tan \alpha})$ $= (1 + \tan \alpha)(\frac{2}{1 + \tan \alpha})$ $= 2$	M1 A1	
		2	

Q	Answer	Marks	Comments
6(c)	$ \tan \beta = \tan(45 - \alpha), \alpha = \beta $ $ x = \tan \beta $	M1	Ы
	$x = \frac{1-x}{1+x}$ $x^2 + 2x - 1 = 0$		
	$x = \frac{-2 \pm \sqrt{4+4}}{2}$	m1	
	$x = -1 + \sqrt{2}$ only	A1	No errors seen
		3	

Question 6 To	tal 7	
---------------	-------	--

Q	Answer	Marks	Comments
7(a)(i)	$f(x) = \sin(\ln(2x)) + 4x - 3$ f(0.6) = -0.419 f(0.7) = 0.130	M1	or reverse
	Change of sign, $0.6 < x < 0.7$	A1	Must have both statement and interval in words or symbols or comparing 2 sides: at 0.6,
		(M1)	sin(ln(1.2)) = 0.18 < 3 - 2.4 = 0.6; at 0.7, sin(ln(1.4)) = 0.33 > 3 - 2.8 = 0.2 Conclusion as before
		(A1)	
		2	

Q	Answer	Marks	Comments
7(a)(ii)	$x_2 = 0.705$ $x_3 = 0.666$	B1	
	x ₃ = 0.000	B1	
		2	

Q	Answer	Marks	Comments
7(b)	$\frac{dy}{dx} = -\frac{1}{x}\sin(\ln(3x))$ $\frac{dy}{dx} = 0, \ln(3x) = 0$ $3x = 1, x = \frac{1}{3}, y = 1$	M1	$\frac{k}{x}\sin(\ln(3x))$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ln(3x) = 0$	M1	
	$3x = 1, x = \frac{1}{3}, y = 1$		
	$\left(\frac{1}{3},1\right)$	A1	
		3	

Q	Answer	Marks	Comments
7(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}A\cos(\ln(2x)) - \frac{1}{x}B\sin(\ln(3x))$	M1 A1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{p}{x}\cos(\ln(2x)) + \frac{q}{x}\sin(\ln(3x))$
	$\frac{d^2 y}{dx^2} = -\frac{1}{x^2} A \cos(\ln(2x)) - \frac{1}{x^2} A \sin(\ln(2x)) + \frac{1}{x^2} B \sin(\ln(3x)) - \frac{1}{x^2} B \cos(\ln(3x))$	M1	$\frac{d^2 y}{dx^2} = \frac{r}{x^2} \cos(\ln(2x)) + \frac{s}{x^2} \sin(\ln(2x)) + \frac{t}{x^2} \cos(\ln(3x)) + \frac{u}{x^2} \sin(\ln(3x))$
	$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + y =$ -A cos(ln(2x)) - A sin(ln(2x)) + B sin(ln(3x)) - B cos(ln(3x))) +A cos(ln(2x)) - B sin(ln(3x)) + A sin(ln(2x)) + B cos(ln(3x))) = 0	A1	Be convinced
		4	

Question 7 Tota	11	
-----------------	----	--

Q	Answer	Marks	Comments
8(a)	$\frac{d}{dx}(\cot x) = \frac{\sin x \times -\sin x - \cos x \times \cos x}{\sin^2 x}$	M1	$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = \frac{A\sin x \times \sin x + B\cos x \times \cos x}{\sin^2 x}$
	$=\frac{-1}{\sin^2 x}$		
	$=-\csc^2 x$	A1	Must see a middle line
		2	

Q	Answer	Marks	Comments
8(b)(i)	$\left[\frac{\mathrm{d}x}{\mathrm{d}y}\right] = -\frac{3}{4}\operatorname{cosec}^{2}\left(2y - \frac{\pi}{2}\right) \times 2$	M1	$\left[\frac{\mathrm{d}x}{\mathrm{d}y}\right] = k \operatorname{cosec}^2\left(2y - \frac{\pi}{2}\right)$
	$=-\frac{3}{2}\operatorname{cosec}^{2}\left(2y-\frac{\pi}{2}\right)$	A1	All correct
		2	

Q	Answer	Marks	Comments
8(b)(ii)	At $\left(\frac{3}{4},\frac{3\pi}{8}\right)$		
	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{3}{2}\mathrm{cosec}^2 \left(2 \times \frac{3\pi}{8} - \frac{\pi}{2}\right) = -3$	M1	PI (must have scored M1 in (i))
	$\frac{dy}{dx} = -\frac{1}{3}$ Gradient of normal=3	M1 A1	
		3	

Question 8 To	al 7	
---------------	------	--

Q	Answer	Marks	Comments
9(a)	$3x^2 + 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 3x \frac{\mathrm{d}y}{\mathrm{d}x} + 3y$	M1	Either LHS or RHS correct
	$3x^{2} + 3y^{2} \frac{dy}{dx} = 3x \frac{dy}{dx} + 3y$ $\frac{dy}{dx}(y^{2} - x) = y - x^{2}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y - x^2}{y^2 - x}$	A1	AG must see a middle line
		2	

Q	Answer	Marks	Comments
9(b)(i)	$\frac{dy}{dx} = 0, y = x^2$ $x^3 + x^6 = 3x^3$	M1	
	$x^{3}(x^{3}-2) = 0$ $x = 2^{\frac{1}{3}}, y = 2^{\frac{2}{3}}$ or $(2^{\frac{1}{3}}, 2^{\frac{2}{3}})$	m1 A1	Attempt to solve
		3	

Q	Answer	Marks	Comments
9(b)(ii)	$\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$ $\frac{d^2y}{dx^2} = $ (dy) (dy)		
	$\frac{d^2 y}{dx^2} =$		
	$\frac{(y^2-x)\left(\frac{\mathrm{d}y}{\mathrm{d}x}-2x\right)-(y-x^2)\left(2y\frac{\mathrm{d}y}{\mathrm{d}x}-1\right)}{(y^2-x)^2}$	M1 A1	
	$\left[As \frac{dy}{dx} = 0 \text{ at stationary points,} \right]$		
	$\begin{bmatrix} As \frac{dy}{dx} = 0 \text{ at stationary points,} \\ \frac{d^2y}{dx^2} = \frac{-2xy^2 + x^2 + y}{(y^2 - x)^2} \end{bmatrix}$		
	Num = $(2^{\frac{4}{3}} - 2^{\frac{1}{3}})(0 - 2^{\frac{4}{3}}) - (2^{\frac{2}{3}} - 2^{\frac{2}{3}})(0 - 1)$ $\frac{d^2y}{dx^2}$ [= -2] < 0, MAX	m1	
	$\frac{d^2 y}{dx^2}$ [= -2] <0, MAX	A1	
		4	

	Question 9 Total	9		

Q	Answer	Marks	Comments
10(a)	$\left(\frac{dx}{dt}\right)$ rate of change of x is proportional to x, difference in temperature	E1	Complete explanation
		1	

Q	Answer	Marks	Comments
10(b)	$\int \frac{dx}{x} = \int -kdt$ $\ln x = -kt + c$ $t = 0, x = 70$ $c = \ln 70 [= 4.248]$ $t = 5, x = 50$ $\ln 50 = -5k + \ln 70$ $k = \frac{1}{5} \ln \frac{7}{5} [= 0.06729]$	M1	Separate variables
	$\ln x = -kt + c$		
	t = 0, x = 70		
	$c = \ln 70$ [= 4.248]	A1	
	t = 5, x = 50	m1	Attempt to find k
	$\ln 50 = -5k + \ln 70$		
	$k = \frac{1}{5} \ln \frac{7}{5} \ [= 0.06729]$	A1	
	$\ln x = -\frac{1}{5}\ln\frac{7}{5} \times 15 + \ln 70$	M1	$\ln x = -their(k) \times 15 + their(c)$
	x = 25.5	A1	
	Temp=45.5		
		6	

Q	Answer	Marks	Comments
10(c)	$\ln 20 = -\frac{1}{5} \left(\ln \frac{7}{5} \right) t + \ln 70$	M1	$\ln 20 = -their(k)t + their(c)$
	<i>t</i> = 18.6	A1	
		2	

Question 10 Tota	9	
------------------	---	--

Q	Answer	Marks	Comments
11(a)	$u = x dv = e^{-0.5x}$ $du = 1 v = -2e^{-0.5x}$ $\int = \left[-2xe^{-0.5x} + 2\int e^{-0.5x} dx\right]$ $= -2xe^{-0.5x} - 4e^{-0.5x}$ $\int_{0}^{6} = (-12e^{-3} - 4e^{-3}) - (-4)$ $= 4 - 16e^{-3}$	M1	Correct form PI
	$\int =]-2xe^{-0.5x} + 2\int e^{-0.5x} dx$	m1	Correct subst into parts formula
	$= -2xe^{-0.5x} - 4e^{-0.5x}$	A1	
	$\int_{0}^{6} = (-12e^{-3} - 4e^{-3}) - (-4)$	m1	Subst limits into $axe^{-0.5x}+be^{-0.5x}$
	$=4-16e^{-3}$	A1	ISW
		5	

Q	Answer	Marks	Comments
11(b)	$2u \mathrm{d}u = \mathrm{d}x$ oe	B1	
	$\left[\int \frac{\sqrt{x+1}}{x-3} \mathrm{d}x = \right] \int \frac{u}{u^2 - 4} \times 2u \mathrm{d}u$	M1	All in terms of <i>u</i>
	$=2\int 1+\frac{4}{u^2-4}\mathrm{d}u$	A1	
	$\frac{4}{u^2 - 4} = \frac{A}{u - 2} + \frac{B}{u + 2}$	m1	Use of partial fractions
	A = 1, B = -1		
	$\int = 2\int 1 + \frac{1}{u-2} - \frac{1}{u+2}$		
	$=2(u+\ln\left(\frac{u-2}{u+2}\right))$	A1	
	$[x]_8^{15} = [u]_3^4$	B1	Or changing back into <i>x</i>
	$\int = 2[(4 + \ln\frac{1}{3}) - (3 + \ln\frac{1}{5})]$	M1	Correct subst into $au + b \ln(u-2) - b \ln(u+2)$ oe
	$=2(1+\ln\frac{5}{3})$	A1	
	$= 2(1+\ln\frac{5}{3})$ $= 2\ln(\frac{5e}{3})$	A1	
		9	

Question 11 Total 14	
----------------------	--

Q	Answer	Marks	Comments
12(a)	$f(x) = \frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{5-2x}$ $4x^{2} + 5 =$		
	$4x^{2} + 5 =$ A(2-x)(5-2x) + B(1-x)(5-2x) + C(1-x)(2-x)	B1	Correctly eliminating fractions
	x = 1: $A = 3x = 2:$ $B = -21x = 2.5:$ $C = 40$	M1 A1	Attempt at finding one constant At least one constant correct
	x = 2.5: C = 40	A1	All three constants correct
		4	

Q	Answer	Marks	Comments
12(b)	$(2-x)^{-1} = 2^{-1} \left(1 - \frac{x}{2}\right)^{-1}$	M1	
	$(2-x)^{-1} = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2$	A1	
		2	

Q	Answer	Marks	Comments
12(c)	f(x): $(1-x)^{-1} = 1+x+x^2$ [$(2-x)^{-1} = 2^{-1}\left(1+\frac{1}{2}x+\frac{1}{4}x^2\right)$]	B1	
	$(5-2x)^{-1} = 5^{-1} \left(1 + \frac{2}{5}x + \frac{4}{25}x^2 \right)$ oe	B1	
	$f(x) = 3(1+x+x^2) - \frac{21}{2} \left(1 + \frac{1}{2}x + \frac{1}{4}x^2 \right) + \frac{40}{5} \left(1 + \frac{2}{5}x + \frac{4}{25}x^2 \right)$	М1	
	$f(x) = \frac{1}{2} + \frac{19}{20}x + \frac{331}{200}x^2$	A1	
		4	

	Question 12 Total	10	1	10	10
--	-------------------	----	---	----	----

Q	Answer	Marks	Comments
13(a)	$t = \frac{x}{c}, y = c \div \frac{x}{c}$		
	$xy = c^2$	B1	oe
		1	

Q	Answer	Marks	Comments
13(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = c \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{c}{t^2}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2}$	B1	
	$y - \frac{c}{p} = -\frac{1}{p^2}(x - cp)$	M1	Attempt to find equ of tgt
	$[p^{2}y - cp = -x + cp]$ At A, $x = 2cp$ At B, $y = \frac{2c}{p}$		
	P	• /	
	Midpoint $AB\left(cp, \frac{c}{p}\right)$ Normal	A1	
	$y - \frac{c}{p} = p^2(x - cp)$	M1	Attempt to find equ of normal
	At C, $y = x$, $y - \frac{c}{p} = p^2(y - cp)$		
	$y = \frac{c(1-p^4)}{p(1-p^2)} = \frac{c(1-p^2)(1+p^2)}{p(1-p^2)} = \frac{c(1+p^2)}{p}$	m1	Attempt to find C or D
	At D, $y = -x$, $y - \frac{c}{p} = p^2(-y - cp)$		
	$y = \frac{c(1-p^4)}{p(1+p^2)} = \frac{c(1-p^2)(1+p^2)}{p(1+p^2)} = \frac{c(1-p^2)}{p}$	A1	Both correct
	Midpoint <i>CD</i>		
	$x = 0.5 \left(\frac{c(1+p^2)}{p} + \frac{c(-1+p^2)}{p} \right) = cp$		
	$y = 0.5 \left(\frac{c(1+p^2)}{p} + -\frac{c(-1+p^2)}{p} \right) = \frac{c}{p}$		
	Both <i>AB</i> and <i>CD</i> have same midpoint	A1	
		7	

Q	Answer	Marks	Comments
13(c)	$ AB = CD = \frac{2c}{p} \times \sqrt{1+p^4}$	B1	Either <i>AB</i> or <i>CD</i>
	As <i>AB</i> and <i>CD</i> are perp, equilateral and <i>P</i> is the midpoint then <i>ABCD</i> form a square	E2,1	
		3	

|--|