

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number 74325 Publications Code WST01_01_rms_20240118 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks	
1 (a)	0.7	win 0.6 win 0.4 lose 0.2 win 0.8 lose 0.2 win 0.6 win lose 0.2 win 0.6 win 0.4 lose lose lose 0.8 lose	B1 B1 B1	
(b)	0.7×0.6	= 0.42 oe	(3) M1 A1	
(c)	'0.42'+($0.7 \times '0.4' \times '0.2') + ('0.3' \times '0.2' \times '0.6') = 0.512$ oe	(2) M1 A1	
(d)	<u>'0.42'</u> '0.512'	= 0.8203 oe awrt 0.820	(2) M1 A1ft	
(e)	<u>'0.42'+(</u>	$\frac{0.7 \times '0.4' \times '0.2')}{0.7} = 0.68 \text{ oe} \text{or} 0.6 + '0.4' \times '0.2' = 0.68 \text{ oe}$	(2) M1 A1	
	Notes Total 1			
(a)	B1 For 0.3 in the correct place on the first branch and 0.4 in the correct place on the second branch			
	B1	For 0.2 and 0.8 in the correct place in the second branch		
	B1 For 0.2, 0.8, 0.6 and 0.4 in the correct place in the third branch			
	NB ISW any extra branches drawn on the tree diagram			
(b)	M1 For 0.7×0.6			
	A1	Cao		
(c)	M1 For '0.42'+ $(0.7 \times '0.4' \times '0.2')$ + ('0.3'×'0.2'×'0.6') Follow through part (b) and their tree diagram		eir tree	
	A1	Cao		
(d)	M1 For $\frac{\text{part (b)}}{\text{part (c)}}$ provided the answer is a probability or ft their tree diagram			
	A1ft	awrt 0.820 or ft part (b) and part (c) provided the answer is a probability or ft their tre Allow 0.82 If ft and a decimal answer is given then this must be at least 3sf	ee diagram.	
(e)	M1 For a correct ratio of probabilities. Follow through their part (b) and their tree diagram or $0.6 + '0.4' \times '0.2'$ ft their tree diagram		m or	
	A1	Cao Allow 0.680		

Question Number		Scheme	Marks		
2 (a)(i)	$Q_2 = 57$		B1		
(ii)	$Q_1 = 45$	$Q_3 = 63$	B1 B1		
	~1	~5	(3)		
(b)	'63'+1.5	(63'-45')=90 or $45'-1.5(63'-45')=18$	M1		
		= 90 or = 18	A1ft		
	16 and 94	4 [are outliers]*	A1*		
			(3)		
(c)	A boxplot drawn with 2 whiskers M1				
	Q_1, Q_2 a	nd Q_3 plotted correctly	Alft		
	Whiskers	s drawn correctly	Alft		
	Outliers	marked at 16 and 94	A1 (4)		
(b)	The med	ian/Ω_2 for February is less/lower than the median/ Ω_2 for December of	R1ft		
(u)	The IOR	/range for February is less/lower than December (allow similar) of	B1ft		
	For a cor	rect interpretation of either average or spread			
	 e.g. on average February weigh less than December oe the weights of February are less varied/little change in variability than the weights of December oe They weighed more later in the year oe Most of the distribution has shifted right, implying that most kangaroos have gained weight but some appear to have lost weight. 				
	(3)				
		Notes	Total 13		
(a)(i)	B 1	Cao			
(ii)	B 1	Cao			
	B 1	Cao			
(b)	M1	For use of either $Q_3 + 1.5(Q_3 - Q_1)$ or $Q_1 - 1.5(Q_3 - Q_1)$ ft part (a)			
	A1ft	For either 90 or 18 ft part (a)			
	A1*	For identifying both outliers with no incorrect/missing working (This can ft part (a))			
(c)	M1	A boxplot drawn with 2 whiskers			
	A1ft	For Q_1 , Q_2 and Q_3 plotted correctly ft part (a)			
	A1ft Whiskers drawn at 18 and 90 ft part (b) or 23 and 86				
	A1	Outliers marked at 16 and 94			
(d)	B1ft	A correct comparison of medians ft their boxplot drawn or part (a) (No figures are re quoted then they need to be correct ft) Must mention the word median/ Q_2	quired but if		
	B1ft	A correct comparison of range/IQR ft their boxplot drawn or part (a) (No figures are if quoted then they need to be correct ft) Must mention either IQR or range	required but		
	B1ft	A correct interpretation of either the average or the spread ft their boxplot drawn or p	oart (a)		
		NB Ignore any reference to skew or outliers			

Question Number	Scheme		
3 (i) (a)	<i>w</i> = 0.15		
	x = 0.7 - 0.15 = 0.55		
	y = 0.65 - 0.55 = 0.1		
	z = 1 - 0.	15 - 0.55 - 0.1 = 0.2	B1
			(4)
(b)	'0.15'+'0	0.1'='0.25'	B1ft
		10.551	(1)
(c)	$[\mathbf{P}(C) \times \mathbf{F}]$	$P(O)$] = '0.65'×'0.7' ≠ '0.55'[= $P(C \cap O)$] or $[P(C \mid O) =]\frac{0.55}{'0.7'} \neq '0.65'[= P(C)]$ oe	M1
	'0.455'≠	$(0.55' \text{ or } (0.7857' \neq 0.65')$ [So not independent]*	A1*
			(2)
		2 1]15	
3 (ii) (a)	$P(F \cup I)$	$H) = \frac{2}{7} + \frac{1}{4} = \left \frac{15}{22} \right $	B1
	L	7 4] 28	(1)
	5 2	2	(1)
(b)	$\frac{3}{8} = \frac{2}{7} + I$	$P(G) - \frac{2}{7}P(G)$	M1
		5 2	
	$\mathbf{D}(\mathbf{C})$	$\frac{1}{8} - \frac{1}{7}$ 19 5	D.64
	P(G) = -	$\frac{3}{1} = \frac{3}{56} \div \frac{3}{7}$	dM1
		$\frac{1-\frac{1}{7}}{7}$	
	P(G) -	19	Δ.1
	$1(0) - \frac{1}{2}$	40	AI
	_		(3)
(c)	$P(F \cap O)$	$(G) = \frac{2}{3} \times \frac{19}{19} = \frac{19}{19}$	B1ft
(0)		7 40]140	Din
		Notes	10tai 12
(i)(a)	B1	w = 0.15 If answer is given in the script and the Venn diagram, then mark the script	
	B1	x = 0.55 If answer is given in the script and the Venn diagram, then mark the script	
	B1	y = 0.1 If answer is given in the script and the Venn diagram, then mark the script	
	B1 $z = 0.2$ If answer is given in the script and the Venn diagram, then mark the script		
(b)	B1ft For $w + y = 0.25'$ follow through their w and their y (You will need to check for their values) provided this is a probability		values)
(c)	M1 For $'(x+y)' \times '(w+x)' \neq 'x'$ or $\frac{'x'}{\cdots} \neq 'x+y'$ ft their w, x and y		
	A1*	W + x A fully correct solution with values evaluated and no errors ft their w, x and y	
	15		
(ii) (a)	B1 For $\frac{1}{28}$ oe Allow awrt 0.536		
(b)	M1	For use of $P(F \cup G) = P(F) + P(G) - P(F) \times P(G)$	
		Dependent on M1. For a correct rearrangement to find P(G) e.g. $\left(\frac{5}{2}-\frac{2}{2}\right)$ + $\left(1-\frac{2}{2}\right)$ Allo	ow
	dM1		
		$\frac{19}{56} = \frac{5}{7} P(G)$ May be implied by $\frac{19}{40}$	
	A 1	For ¹⁹ oe	
	AI		
(c)	B1ft	For $\frac{19}{140}$ or or $\frac{2}{7} \times P(G)$ evaluated correctly and where $P(G)$ is a probability	

Question Number		Scheme	Marks
4 (a)	$E\left(\frac{1}{X}\right) = 1 \times \frac{1}{10} + \frac{1}{2} \times \frac{1}{5} + \frac{1}{3} \times \frac{3}{10} + \frac{1}{4} \times \frac{2}{5} = \frac{2}{5} *$		
(b)	$E\left(\left(\frac{1}{X}\right)^{2}\right) = 1^{2} \times \frac{1}{10} + \left(\frac{1}{2}\right)^{2} \times \frac{1}{5} + \left(\frac{1}{3}\right)^{2} \times \frac{3}{10} + \left(\frac{1}{4}\right)^{2} \times \frac{2}{5} \left[=\frac{5}{24}\right]$		
	$\operatorname{Var}\left(\frac{1}{X}\right) = \frac{5}{24} - \left(\frac{2}{5}\right)^2 = \frac{29}{600}$ M1 A1		
(c) (i)	$\left[\mathrm{E}(Y) \right]$	=]12	(3) B1
(ii)	$\begin{bmatrix} \operatorname{Var}(Y) = \end{bmatrix} 30^2 \operatorname{Var}\left(\frac{1}{X}\right)' = \frac{87}{2} \text{ or If } y: 30 \ 15 \ 10 \ 7.5 \text{ then } \left[\operatorname{Var}(Y) = \right] \frac{375}{2} - 12^2 = \frac{87}{2} \text{M1 A1}$		
		30	(3)
(d)	$\left[Y < 20\right]$	$(D \Rightarrow) = \frac{30}{X} < 20 \Rightarrow X > 1.5$ or $y: 30$ 15 10 7.5	M1
	P(Y < Z)	$20) = P(X > 1.5) = \frac{9}{10}$	A1
	$\left[P(X < 3 Y < 20) = \right] \frac{P(X = 2)}{P(X > 1.5)} = \frac{\frac{1}{5}}{\frac{9}{10}} = \frac{2}{9} \text{ or } \left[P(X < 3 Y < 20) = \right] \frac{P(Y = 15)}{P(Y < 20)} = \frac{\frac{1}{5}}{\frac{9}{10}} = \frac{2}{9} \frac{M1 \text{ A1}}{A1}$		
		Notes	(5) Total 12
(a)	B1*	Value given, so must see sight of a correct expression, with no incorrect working seer	. (Allow
(b)	M1	For attempt at an expression for $E\left(\left(\frac{1}{X}\right)^2\right)$ with at least 3 correct terms (Allow equivalent expressions.) May be embedded in a correct expression for Var (X)	
	M1	For a correct expression for $Var\left(\frac{1}{X}\right)$ (Need not be simplified) ft a stated value of $E\left(\frac{1}{X}\right)$	$\left(\left(\frac{1}{X}\right)^2\right)$
	A1	Cao Allow awrt 0.0483	
(c) (i)	B 1	For $[E(Y)] = 12$	
(ii)	M1	For correct use of $30^2 \operatorname{Var}\left(\frac{1}{X}\right)$ ft their $\operatorname{Var}\left(\frac{1}{X}\right)$ or $\frac{375}{2} - 12^2$ (May be implied by $\frac{87}{2}$)	oe)
	A1	For $[Var(Y) =] \frac{87}{2}$ oe	
(d)	M1	For a correct inequality for $Y < 20$ or all 4 values of Y found (these may be seen in p	art (c))
	A1	For $P(Y < 20) = \frac{9}{10}$ (May be seen as the denominator (e.g $0.2 + 0.3 + 0.4$ oe) in a rational probabilities and scores M1A1)	o of
	dM1 Dependant on 1 st M1 For $\frac{P(X=2)}{P(X>1.5)}$ or $\frac{P(Y=15)}{P(Y<20)}$ Allow $\frac{P(1.5 < X < 3)}{P(X>1.5)}$		
	A1	For a correct numerator	
	A1	For $\frac{2}{9}$ oe (Allow a decimal answer that is 3sf or better e.g. 0.222)	

Question Number	Scheme			
5 (a)	$X \sim N(210, 25^2)$			
	P(X < 2	$40) = P\left(Z < \frac{240 - 210}{25}\right) \left[= P(Z < 1.2)\right]$	M1	
		= 0.8849*	A1*	
			(2)	
(b)	P(190 <	$X < 240) = 0.8849 - P\left(Z < \frac{190 - 210}{25}\right) \left[= 0.8849 - P(Z < -0.8)\right]$	M1	
	0.8849 - 0.673	-0.2119 = 0.673 awrt	A1	
			(2)	
(c)	$\frac{210+k}{25}$	$\frac{-210}{25} = 1.96 \text{or} \frac{210 - k - 210}{25} = -1.96$	M1 B1	
	<i>k</i> = 49	awrt 49	A1 (2)	
		S 210	(3)	
(d)	P(X < S)	$S(5) = 0.15 \Rightarrow \frac{5 - 210}{25} = -1.0364$	M1 B1	
	S = 184.	09 awrt 184	A1	
			(3)	
(e)	$Y \sim N(\mu$	(ι, σ^2)		
	$\mathbf{P}(Y < 1)$	$52) = 0.05 \Longrightarrow \frac{152 - \mu}{\sigma} = -1.6449$	M1 A1	
	$\mathbf{P}(Y > 18$	$80) = 0.40 \Longrightarrow \frac{180 - \mu}{\sigma} = 0.2533$	A1	
	28 = 1.89	982σ	dM1	
	$\sigma = 14.75$ and $\mu = 176.26$			
(a)	M1	Notes Total 15		
(a)	N11 A 1*	For standardising using 240, 210 and 25		
(b)	M1	M1 For standardising using 190/230, 210 and 25 and subtracting from 0.8849 May be implied by $\phi(1,2) + \phi(0,2) = 1 \text{ or } 0.8849 + 0.7881 = 1$		
	A1	awrt 0.673		
(c)	M1	For standardising and setting equal to a z value, where $1.9 < z < 2$		
	B1	For $ z = 1.96$ or better		
	 A1	awrt 49		
(d)	M1	For standardising using S (allow any letter) and setting equal to a z value, where $1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 $	z < 1.1	
	B1	For $z = -1.0364$		
	A1	awrt 184		
(a)	M1	For a correct method to form an equation in μ and σ set equal to a z value, where		
(e)	IVII	-1.6 < z < -1.7 or $0.2 < z < 0.3$ (Signs must be compatible)		
	A1	For a correct equation for $P(Y < 152)$		
	A1	For a correct equation for $P(Y > 180)$		
	dM1 Dependent on previous M mark. For solving the 2 equations simultaneously. If answers are incorrect then working must be shown. May be implied by $\sigma = awrt 14.8$ and $\mu = awrt 176$			
	A1	For $\sigma = awrt \ 14.8$ and $\mu = awrt \ 176$		

Question Number	Scheme			Marks	
6 (a)(i)	x = 1.2 + 0.2(1.4x + 1.5) o.e or $y = 1.4(1.2 + 0.2y) + 1.5$ o.e			M1	
	$x = \frac{25}{12}$ $y = \frac{53}{12}$			A1A1	
(ii)	$\left[\sum x=\right]$	$\frac{25}{12} \times 12 [= 25]$			A1*
					(4)
(b)	$\left[\sum y=\right]'\left(\frac{53}{12}\right)'\times 12=53$			M1A1ft	
	$S_{xy} = \frac{6961}{60} - \frac{(25 \times 53')}{12} = 5.6$			M1 A1	
					(4)
(c)	$\frac{'5.6'}{S_{xx}} = 1$.4 and $\frac{5.6'}{S_{yy}} = 0.2$	$\frac{5.6'}{\sqrt{\frac{5.6'}{1.4} \times \frac{5.6'}{0.2}}}$	$\frac{S_{xy}}{S_{xx}} = 1.4 \text{ and } \frac{S_{xy}}{S_{yy}} = 0.2$	M1
	$S_{xx} = 4$	and $S_{yy} = 28$	$\frac{5.6}{\frac{5.6}{\sqrt{1.4 \times 0.2}}}$	$r^2 = 1.4 \times 0.2$	A1
	$r = \frac{5}{\sqrt{4}}$	$\frac{.6'}{} = 0.5291$	$\sqrt{1.4 \times 0}$	$\overline{0.2} = 0.5291$	M1 dA1
	$\sqrt{4'\times'28'}$				
		-		awrt 0.529	
				awrt 0.529	(4)
		For either of the two equa	Notes tions o.e or an attempt to s	awrt 0.529	(4) Total 12 cously.
(a)(i)	M1	For either of the two equations May be implied by $x = \frac{25}{12}$	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better	(4) Total 12 cously.
(a)(i)	M1 A1	For either of the two equations May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ or	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ or	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better	(4) Total 12 cously.
(a)(i)	M1 A1 A1	For either of the two equations May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ of better and $y = \frac{53}{12}/4.42$ of	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co	(4) Total 12 cously.
(a)(i)	M1 A1 A1	For either of the two equates May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ of better and $y = \frac{53}{12}/4.42$ of	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co	(4) Total 12 cously.
(a)(i) (ii)	M1 A1 A1 A1*	For either of the two equates May be implied by $x = \frac{25}{12}$. For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ or better and $y = \frac{53}{12}/4.42$ or e of $\sum x$ rather than \overline{x} e.g	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen, NB Working must be sho	(4) Total 12 cously. pordinate) 3) oe own
(a)(i) (ii)	M1 A1 A1 A1*	For either of the two equates May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ or better and $y = \frac{53}{12}/4.42$ or x rather than \overline{x} e.g incorrect working must be	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen. NB Working must be she	(4) Total 12 cously. bordinate) 3) oe own
(a)(i) (ii) (b)	M1 A1 A1 A1* M1	For either of the two equates May be implied by $x = \frac{25}{12}$. For either $x = \frac{25}{12}/2.08$ of For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no For ' $\left(\frac{53}{12}\right)' \times 12$ ft their the form of the form of Σ is the answer of Σ is the form of the form of the form of the form of Σ is the form of t	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ or better and $y = \frac{53}{12}/4.42$ or e of $\sum x$ rather than \overline{x} e.g incorrect working must be y coordinate.	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen. NB Working must be sho $(4+0.2\sum y) + 18$ oe	(4) Total 12 cously. bordinate) bordinate) bordinate) bordinate)
(a)(i) (ii) (b)	M1 A1 A1 A1* M1	For either of the two equates May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ of For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no For ' $\left(\frac{53}{12}\right)$ ' ×12 ft their y Allow use of $\sum y$ rather the	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ of better and $y = \frac{53}{12}/4.42$ of e of $\sum x$ rather than \overline{x} e.g incorrect working must be y coordinate.	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen. NB Working must be sho $.4 + 0.2\sum y) + 18$ oe	(4) Total 12 cously. bordinate) 3) oe own
(a)(i) (ii) (b)	M1 A1 A1 A1* M1 A1ft	For either of the two equates May be implied by $x = \frac{25}{12}$ For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no For ' $\left(\frac{53}{12}\right)$ ' ×12 ft their Allow use of $\sum y$ rather the for $\sum y = 53$ or ft their	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{1}$ r better or $y = \frac{53}{12}/4.42$ or better and $y = \frac{53}{12}/4.42$ or e of $\sum x$ rather than \overline{x} e.g incorrect working must be y coordinate. than \overline{y} e.g. $\sum y = 1.4(14)$ y coordinate $\times 12$ (An answer:	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen. NB Working must be she $.4 + 0.2\sum y) + 18$ oe wer of exactly 5.6 implies M1A1	(4) Total 12 cously. bordinate) 3) oe own
(a)(i) (ii) (b)	M1 A1 A1 A1* M1 A1ft M1	For either of the two equations May be implied by $x = \frac{25}{12}$. For either $x = \frac{25}{12}/2.08$ or For both $x = \frac{25}{12}/2.08$ or NB This is M1 on EPEN For $\frac{25}{12} \times 12$ Allow use As the answer is given no For $'\left(\frac{53}{12}\right)' \times 12$ ft their Allow use of $\sum y$ rather the For $\sum y = 53$ or ft their Use of $S_{xy} = \frac{6961}{60} - \frac{25 \times 100}{100}$	Notes tions o.e or an attempt to s $\frac{5}{2}/2.08$ or better or $y = \frac{5}{12}$ r better or $y = \frac{53}{12}/4.42$ of better and $y = \frac{53}{12}/4.42$ of e of $\sum x$ rather than \overline{x} e.g incorrect working must be y coordinate. than \overline{y} e.g. $\sum y = 1.4(14)$ y coordinate $\times 12$ (An answer $\frac{x}{12}$ ft their $\sum y$ If $\sum x$	awrt 0.529 olve the two equations simultane $\frac{3}{2}/4.42$ or better or better or better (May be written as a co $x \sum x = 14.4 + 0.2(1.4\sum x + 18)$ seen. NB Working must be sho $.4 + 0.2\sum y) + 18$ oe wer of exactly 5.6 implies M1A1 y is not stated then M0 is awar	(4) Total 12 cously. bordinate) bordinate) bordinate) cously. bordinate) bordinate) cously. bordinate) cously. bordinate) cously. cou

	М1	For use of the gradient to find S_{xx} and S_{yy} ft their S_{xy} or use of $\frac{S_{xy}}{\sqrt{\frac{S_{xy}}{1.4} \times \frac{S_{xy}}{0.2}}}$
(0)	111	or setting both $\frac{S_{xy}}{S_{xx}}$ and $\frac{S_{xy}}{S_{yy}}$ equal to their respective gradients
	A1	$S_{xx} = 4 \text{ and } S_{yy} = 28 \text{ or } \frac{S_{xy}}{\frac{S_{xy}}{\sqrt{1.4 \times 0.2}}} \text{ or } \frac{\left(S_{xy}\right)^2}{S_{xx} \times S_{yy}} = 1.4 \times 0.2$
		For a correct expression for r ft their S_{xy} , S_{xx} and S_{yy} or $\sqrt{1.4 \times 0.2}$ If answer is incorrect then
	M1	you must see their stated values substituted into a correct expression for <i>r</i> . An answer of $\frac{\sqrt{7}}{5}$
		implies M1A1M1 only
	dA1	Dependant on all previous marks being awarded. awrt 0.529

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

各种国际课程资料都有,

全网最全请加微信:

bubu1600x