

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number 73489
Publications Code WST02_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- · dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the guestion paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks		
1 (a)	When th	e data is ordinal e.g. Judges' ranks	B1		
	When a	non-linear relationship might be expected	B1		
			(2)		
(b)	$H_0: \rho =$	$0, H_1: \rho \neq 0$	B1		
	Critical	value $r_s = -0.6485$ or CR: $r_s \le -0.6485$ (and $r_s \ge 0.6485$)	B1		
	Reject H	I ₀ or significant or lies in the critical region	M1		
	_	arman's rank correlation coefficient shows there is sufficient evidence of a on [between the length and maximum diameter of the melons]	A1		
			(4)		
(c)		$0, H_1: \rho < 0$	B1		
	Critical	value $r = -0.5494$ or CR: $r \le -0.5494$	B1		
	-	duct moment correlation coefficient shows there is insufficient evidence of a correlation [between the length and maximum diameter of the melons]	B1		
		(3			
		Notes	Total 9		
(a)	B1	For one correct condition			
	B1	For a second correct condition. Condone not underlying normal			
(b)	B1	For both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ and			
		For critical value of -0.6485 (Allow -0.5636 if a one tailed test is stated for H ₁) Condone 0.6485 if compared with 0.673			
	B1)		
		Condone 0.6485 if compared with 0.673 A correct statement – no context needed but do not allow contradicting non context needed but do not allow contradicting needed b	ntextual		
	B1 M1	Condone 0.6485 if compared with 0.673	ntextual		
		Condone 0.6485 if compared with 0.673 A correct statement – no context needed but do not allow contradicting non concomments. ft their CV provided the CV is negative (May be implied by a correct statement).	ntextual		
(c)	M1	Condone 0.6485 if compared with 0.673 A correct statement – no context needed but do not allow contradicting non concomments. ft their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seen For a correct conclusion which is rejecting H ₀ Allow negative correlation This independent of the hypotheses For both hypotheses correct. Must be in terms of ρ. Must be attached to H ₀ and	mark is		
(c)	M1	Condone 0.6485 if compared with 0.673 A correct statement – no context needed but do not allow contradicting non concomments. ft their CV provided the CV is negative (May be implied by a correct conclusion) Condone a positive CV if a comparison with 0.673 seen For a correct conclusion which is rejecting H ₀ Allow negative correlation This independent of the hypotheses	mark is		

Question Number	Scheme			Marks		
2 (a)	$\frac{60 \times 60}{240}$ or $\frac{60 \times 84}{240}$ or $\frac{60 \times 96}{240}$				M1	
	15 and 21 and 24			A2		
				(3)		
(b)	H ₀ : There is no association between the payment amount and payment method used H ₁ : There is an association between the payment amount and payment method used			B1		
	Obse	erved	Expected	$\frac{\left(O-E\right)^2}{E}$		
	2	.3	15	$\frac{(23 - '15')}{'15'} = 4.2667$		M1
	2	.1	21	$\frac{(21-'21')}{'21'}=0$		1111
	1	6	24	$\frac{(16 - '24')}{'24'} = 2.6667$		
	$\chi^2 = 2.4$	048 + '4.2	2667'+'0'+'2.666	7'		M1
	= 9.3381 awrt 9.34					A1
				$= 9.488 \implies \text{CR:} X^2 \geqslant 9.48$		B1 B1ft
	[Not in the CR/Not significant/Do not reject H ₀] There is no evidence of an association					dA1
	between the payment amount and payment method used					(7)
				Notes		Total 10
(a)	M1 For a correct method for finding one expected value					
	A2	For all 3 answers correct (A1 for 2 correct answers or 1 correct and 3 values that sum to 60)				
(b)	B1	Both hypotheses correct. Must mention method and amount with payment at leas (may be written in terms of independence)			least once.	
	N/1			finding all three contribution		
	M1 be implied by 3 correct values If expected values are incorrect then working mushown				nust be	
	M1 For adding their values to 2.4048 (If all 9 values are calculated the 6 values no part (a) must have working shown or the correct values seen or awrt 9.34)				ot found in	
	A1	• ' ' '				
	B1	v = 4 T	This mark can be i	mplied by a correct critical	value of 9.488	
	B1ft	9.488 o	r better ft their Do	oF		
	Dependent on both M marks. A correct contextualised conclusion which is not H ₀				t rejecting	
	dA1	Must m then A0	here. Contradicto	and amount . If no hypothese ory statements score A0.	e.g. "Significant, do not rej	
		".Cond	one "relationship"	or "connection" here but i	not "correlation".	

Question			M 1	
Number		Scheme	Marks	
3 (a)	It is not a	a statistic as it involves <u>unknown</u> [population] parameter	B1	
			(1)	
(b)		$E\left(\frac{3}{5}X_1 + \frac{5}{7}X_2\right) = \frac{3}{5}E(X_1) + \frac{5}{7}E(X_2)$	M1	
	$=\frac{3}{5}\mu+\frac{3}{5}$	$\frac{5}{7}\mu = \frac{46}{35}\mu \neq \mu$ So S is a biased estimator for μ	A1	
			(2)	
(c)	$\frac{46}{35}\mu' - \mu'$	$u = \frac{11}{35} \mu$	B1ft	
			(1)	
(d)	$E(Y) = aE(X_1) + bE(X_2) = \mu$			
(u)	$\Rightarrow (a+b)$	$(\mu) = \mu$	M1	
	a+b=1		A1	
			(2)	
(e)	Var(Y)	$= a^2 \text{Var}(X_1) + b^2 \text{Var}(X_2) = (a^2 + b^2)\sigma^2$	M1	
	Var(Y)	$=(a^2+'(1-a)^{1/2})\sigma^2$	M1	
	Var(Y)	$= \left(2a^2 - 2a + 1\right)\sigma^2 *$	A1*	
			(3)	
		Notes	Total 9	
(a)	B 1	For a correct explanation Allow σ is unknown (Do not allow σ is unknown var	riance)	
(b)	M1	For writing or using $E(S) = aE(X_1) + bE(X_2)$ Condone missing subscripts		
	A1	cao (Allow $1.31 \mu \neq \mu$)		
(c)	B1ft	Follow through their part (a) $-\mu$		
(d)	M1	For writing or using $E(Y) = aE(X_1) + bE(X_2) = \mu$ (May be implied by $a + b = \mu$	1)	
(4)	1411	Condone missing subscripts		
	A1	Cao		
(e)	M1	For writing or using $Var(Y) = a^2 Var(X_1) + b^2 Var(X_2)$ Condone missing subset	cripts	
	M1	For substitution of $b = 1 - a$ ft their part (d) into their expression for $Var(Y)$		
	A1*	Answer is given so no incorrect working must be seen		

Question Number		Scheme	Mark
4 (a)		$\frac{2}{25}t dt = \frac{2}{25} \left[\frac{t^2}{2} \right]_a^{a+1} \text{ or } F(t) = \begin{cases} 0 & t < 0 \\ \frac{1}{25}t^2 & 0 \le t < 5 \text{ or } \\ 1 & t > 5 \end{cases}$ $\frac{1}{5}(a+1) + \frac{2}{25}a(a+1-a)$	M1
		$(a+1)^2 - a^2$ or $(a+1)^2 - \frac{1}{25}(a+1)^2 - \frac{1}{25}a^2$ or $(\frac{1}{25}a + \frac{1}{25} + \frac{1}{25}a)$	M1
	$\frac{1}{25}(a$	$a^{2} + 2a + 1 - a^{2}$ oe $\left[= \frac{1}{25} (2a + 1) \right]^{*}$	A1*
(b)	· ·	The data could be modelled by the p.d.f The data could not be modelled by the p.d.f	B1
	Expec	eted frequencies: 6, 18, 30, 42, 54	M1 A1
		$\frac{(2-E)^2}{E} = \frac{(10-6)^2}{6^2} + \dots + \frac{(68-54)^2}{54^2}$ $\frac{C}{E} = \frac{O^2}{6^2} + \dots + \frac{68^2}{54^2} - 150 \text{ or } 2.666\dots + 1.388\dots + 1.2 + 1.166\dots + 3.629$	M1
	= 10.0	05 awrt 10.1	A1
	$\nu = 4$		B1
	$\chi_{4}^{2}(0$	$0.05) = 9.488 \Rightarrow CR \geqslant 9.488$	B1ft
		e CR so there is sufficient evidence to reject H ₀]	
		cient evidence to say that data does not fit the given p.d.f	dA1 (8)
		Notes	Total 11
(a)	M1	For correct integration, ignore limits or finding the area of a trapezium	•
	M1	For substitution of the limits. May be implied by $\frac{1}{25}(a^2+2a+1-a^2)$ or simplifying expression for the area of the trapezium	ig the
	A1*	Answer is given so no incorrect working should be seen. At least one correct line of from the method mark to the final answer should be seen	working
(b)	B1	Both hypotheses correct. Allow H_0 : The p.d.f/f(t) is a suitable model H_1 : The p.d.f/f(t) is not a suitable in	model
	M1 For a correct method to find at least one expected frequency e.g. $\frac{1}{25} \times 150$ Ignore any		
	A1	reference to limits For all 5 expected frequencies correct	
	M1	For an attempt at the test statistic, at least 2 correct expressions/values ft their expect frequencies	ted
	A1	awrt 10.1	
	B1	v = 4 This mark can be implied by a correct critical value of 9.488	
	B1ft	9.488 or better ft their DoF	
	dA1	Dependent on 2^{nd} M1. A correct conclusion based on their χ^2 critical value	
		If no hypotheses or they are the wrong way round, then A0 here.	

Question Number		Scheme	Marks	
5 (a)	$\overline{x} \pm 1.64$	$49 \times \frac{5}{\sqrt{10}}$	M1 B1	
		$0 \Rightarrow (\overline{x} - 2.60, \overline{x} + 2.60)$ *	A1*	
			(3)	
(b)	$\bar{y} \pm 1.96$	$\times \frac{3}{\sqrt{20}}$	M1 B1	
		\Rightarrow $(\overline{y} - 1.31, \overline{y} + 1.31)$	A1	
			(3)	
(c)(i)	$\overline{X} - \overline{Y} \sim$	$N\left(\mu-\mu, \ \frac{5^2}{10} + \frac{3^2}{20}\right) \Rightarrow \overline{X} - \overline{Y} \sim N(0, \ 2.95)$	M1 A1	
(ii)	Do not o	verlap when either		
		$> \overline{y} + 1.31'$ or $\overline{x} + 2.60 < \overline{y} - 1.31'$	M1	
		3.91 or $\bar{x} - \bar{y} < -3.91$	A1ft	
	$2 \times P(\overline{X} - \overline{Y} > 3.91) = 2 \times P\left(Z > \frac{'3.91' - '0'}{'\sqrt{2.95}'}\right) = \left[2 \times P(Z > 2.276)\right]$			
		$[13] = 0.0226$ (calculator gives $[2 \times 0.0114] = 0.0228$)	A1	
			(7)	
		Notes	Total 3	
(a)	M1	For use of $\overline{x} \pm z$ value $\times \frac{5}{\sqrt{10}}$		
	B1	For use of $z = 1.6449$ or better		
	A1*	Answer is given so no incorrect working should be seen (condone use of 1.6	45)	
(b)	M1	For use of $\overline{y} \pm z$ value $\times \frac{3}{\sqrt{20}}$		
	B1	For use of $z = 1.96$ or better		
	A1	For $(\overline{y} - \text{awrt1.31}, \overline{y} + \text{awrt1.31})$ Allow 1.315		
(c)(i)	M1	For a correct method to find the variance (May be seen in a standardisation e	expression)	
	A1 For N(0, 2.95) (May be seen in a standardisation expression) Allow N $\left(0, \frac{5^2}{10} + \frac{3^2}{20}\right)$ oe			
(ii)	M1	For $\bar{x} - 2.60 > \bar{y} + 1.31$ oe or $\bar{x} + 2.60 > \bar{y} - 1.31$ oe ft part (b)	, ,	
	A1ft	For $\overline{x} - \overline{y} > 3.91'$ or $\overline{x} - \overline{y} < -3.91'$ ft part (b)		
	M1	For multiplying by 2 (may be seen at any stage of their working)		
	M1	For standardising ft their 3.91, their mean and their standard deviation (Do n of 2.6 or 1.31 as their 3.91)	ot allow use	
	A1	For answers in the range awrt 0.0226 – awrt 0.0228		

Question Number		Scheme	Marks		
6 (a)	$\alpha = 5.1$		B1		
	$\beta = \sqrt{\frac{10}{100}}$	$\frac{694.65 - 65 \times ('5.1')^2}{64}$	M1		
	= 0.25		A1		
			(3)		
(b)	$H_0: \mu_A$	$=\mu_{\scriptscriptstyle B}$	B1		
(0)	$H_1: \mu_A <$	$<\mu_{\scriptscriptstyle B}$	DI		
	$z = \pm -$	5.0-'5.1'			
]-	$\frac{5.0 - 5.1}{0.24^{2}} + \frac{0.25^{2}}{65}$	M1 M1		
	=-2.3		A1		
		ed c.v. $z = -1.6449$ or CR: $z \le -1.6449$	B1		
		ignificant/Reject H ₀	M1		
	Sufficie	nt evidence to support Roxane's claim	A1		
			(7)		
(c)		e sample is large the CLT applies.	M1		
	No [nee	d to assume that the fat content is normally distributed]	A1		
			(2)		
(d)	Assumed that $s^2 = \sigma^2$ in both groups				
			(1)		
		Notes	Total 13		
(a)	B1	cao			
	M1	For a correct method to find β using their α			
	A1	Cao			
(b)	B 1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of A	u		
	M1	For correct standard error ft their s in part a			
	M1				
	A1	awrt –2.37 (Allow 2.37)			
	B1	1 0			
	M1	contextual comments. It their CV and test statistic			
	A1	A correct contextual statement e.g sufficient evidence to support that crisps f A have a lower fat content than the crisps from brand B (must include the w bold)			
(c)	M1	A suitable comment that mentions large and CLT			
	A1	A correct answer, context not required.			
(d)	B1	For the assumption that sample variance = population variance for both grou	ps		

Question Number		Scheme	Marks	
7 (a)	$E(X) = 4 \times 15 - 3 \times 10 [= 30]$			
	Var(X)	$=4^2 \times 5^2 + 3^2 \times 4^2 [= 544]$	M1	
	So X ~]	N(30, 544)		
	P(X < 40	$0) = P\left(Z < \frac{40 - 30'}{\sqrt{544'}}\right) \left[= P\left(Z < 0.428\right) \right]$	M1	
		= 0.6664 (Calculator gives 0.6659) awrt 0.666	A1	
			(4)	
(b)	E(A+B)	$(+D) = 15 + 10 + 3 \times 20 = [85]$	M1	
	Var(A+	$(B+D) = 5^2 + 4^2 + 3 \times \sigma^2 = [41 + 3\sigma^2]$	M1	
	So $A + B$	$B + D \sim N(85, 41 + 3\sigma^2)$		
	P(A+B)	$+D < 76$) = $P\left(Z < \frac{76 - 85}{\sqrt{41 + 3\sigma^2}}\right) = 0.242$		
	So $\frac{-}{\sqrt{41}}$	$\frac{-9}{+3\sigma^2} = -0.7$ or $\frac{9}{\sqrt{41+3\sigma^2}} = 0.7$ (Calculator gives -0.69988)	M1 A1	
	$3\sigma^2 = \left(\frac{1}{2}\right)^2$	$\left(\frac{-9}{-0.7}\right)^2 - 41$	dM1	
	$\sigma = 6.43$	37 awrt 6.44	A1	
			(6)	
		Notes	Total 10	
(a)	M1	For a correct method to find $E(X)$. May be implied by a correct standardisati expression.	on	
	M1	For a correct method to find $Var(X)$ Allow $\sqrt{544}$ oe or 23.3 ² or better. May by a correct standardisation expression.	be implied	
	M1	For standardising (\pm) using their mean and their variance		
	A1	awrt 0.666		
(b)	M1	For a correct method to find $E(A+B+D)$		
	M1	For a correct method to find $Var(A+B+D)$		
	For standardising (\pm) using their mean and their standard deviation which is in			
	M1 σ^2 and setting equal to -0.7 or better. Allow $+0.7$			
	A1	For the correct equation		
	dM1	Dependent on the previous M mark. For squaring and rearranging leading to a in σ^2	nn equation	
	A1	awrt 6.44 (Do not award if previous A mark was not awarded)		