

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 72905 Publications Code WST02_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Scheme	Marks	
X~B(50, 0.4)		
$P(X = 26) = 0.9686 - 0.9427 \text{ or } {}^{50}C_{26} (0.4)^{26} (0.6)^{24}$	M1 A1	
awit <u>0.0235</u>	(2)	
$P(X \ge 26) = 1 - P(X \le 25)$	M1	
= 1 - 0.9427 = awrt 0.0573	A1 (2)	
(From tables) $k = \underline{19}$	B1	
L = N(240, 144)	(1) M1A1	
$J \sim N(240, 144)$ (222 5-240)	WIIAI	
$P(X \le 222) \sim P(J < 222.5) = P\left(Z < \frac{222.5}{\sqrt{144}}\right)$	M1M1	
P(Z < -1.46) = 1 - 0.9279 = awrt 0.0721 - 0.0724	A1	
	(5)	
<i>n</i> is large (oe) and <i>p</i> is close to 0.5	B1 (1)	
	[11 marks]	
Notes		
M1 Use of tables or ${}^{50}C_{26}(p)^{26}(1-p)^{24}$ with $0 allow alternative notations for$		
A1 awrt 0.0259 (correct answer scores 2 out of 2)		
M1 writing or using $1 - P(X \le 25)$		
A1 awrt 0.0573 (calc 0.0573437) (correct answer scores 2 out	z of 2)	
B1 19 cao $k \leq 19$ or $k \geq 19$ is B0		
1^{st} M1 For writing or using N(240,) (May be seen in standardisation)		
1^{st} A1 For writing or using N(240, 144) (May be seen in standardisation)		
2^{10} MT use of continuity correction 222 ± 0.5		
3^{rd} M1 $\pm \left(\frac{222 \text{ or } 222.5 \text{ or } 221.5 - their mean}{their sd}\right)$ if distribution not clearly stated,		
then the mean and sd must be correct in the standardisation to score the	iis mark	
2^{nd} A1 awrt 0.0721 through to awrt 0.0724 (calc 0.0723743)		
method	rom wrong	
[NB: Use of binomial distribution gives 0.0719]		
B1 both conditions required		
for <i>n</i> is large allow in words e.g. 'sample is large'		
allow 0.4 in place of p		
condone $n > 30^{\circ}$ (or any number > 30) Ignore comments about nn		
	Scheme $X \sim B(50, 0.4)$ $P(X = 26) = 0.9686 - 0.9427 \text{ or } {}^{50}C_{26} (0.4)^{26}(0.6)^{24}$ $P(X = 26) = 1 - P(X \leq 25)$ $= 1 - 0.9427 = awrt 0.0573$ (From tables) $k = 19$ $J \sim N(240, 144)$ $P(X \leq 222) \sim P(J < 222.5) = P\left(Z < \frac{222.5 - 240}{\sqrt{144}}\right)$ $P(Z < -1.46) = 1 - 0.9279 = awrt 0.0721 - 0.0724$ n is large (oe) and p is close to 0.5M1 Use of tables or ${}^{50}C_{26}(p)^{26}(1-p)^{24}$ with $0 allow alternative {}^{50}C_{26}A1 awrt 0.0259 (correct answer scores 2 out of 2)M1 writing or using 1 - P(X \leq 25)A1 awrt 0.0573 (calc 0.0573437) (correct answer scores 2 out B1 19 cao k \leq 19 or k \geq 19 is B01^{st} M1 For writing or using N(240,) (May be seen in standardisat 1^{st} A1 For writing or using N(240, 144) (May be seen in standardisat 2^{nd} M1 use of continuity correction 222 \pm 0.53^{rd} M1 \pm \left(\frac{222 \text{ or } 222.5 \text{ or } 221.5 - their mean}{their sd}\right) if distribution not cthen the mean and sd must be correct in the standardisation to score the 2^{nd} A1 awrt 0.0721 through to awrt 0.0724 (calc 0.0723743)Answer in the range implies all previous marks unless clearly comes f method[NB: Use of binomial distribution gives 0.0719]B1 both conditions required for n is large allow in words e.g. 'sample is large' allow 0.4 in place of pcondone 'n > 30' (or any number > 30)Ignore comments about np$	

Question Number	Scheme	Marks	
2. (a)	e.g. Population is small	B1	
		(1)	
(b)(i)	list/register/database of all members (of the leisure centre)	B1	
(ii)	A member (of the leisure centre)	B1	
		(2)	
(c)	C is the statistic as it is (a quantity) based only on <u>values</u> (oe) taken	B1	
	from the sample/it contains no unknown parameters/population	(1)	
	values		
		[4 marks]	
	Notes		
(a)	B1 any correct characteristic of the population that makes a census a practical		
(b)(i)	alternative to a sample (accessible, finite, well-defined) B1 idea of list (oe) <u>and</u> idea of all members (e.g. list of each member of the leisure centre))		
(ii)	B1 a single member		
	Condone members Also condone One of the members in the sample The opinion/view of one of the members is B0		
(c)	B1 choosing C (or clearly identifying C in words) only with a correct supporting		
	For values allow e.g. information, observations, calculations, function, numerical data, etc.		

Question	Scheme	Marks	
Number			
3. (a)	$\int_{2}^{5} \frac{1}{48} \left(x^2 - 8x + c \right) dx = 1$	M1	
	$1 = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + cx \right]^5$	M1	
	$1 = \frac{1}{48} \left[\left(\frac{5^3}{3} - 4(5^2) + 5c \right) - \left(\frac{2^3}{3} - 4(2^2) + 2c \right) \right] \underline{\text{or}} 48 = 39 - 84 + 3c$		
	$(\Rightarrow 3c = 93 \Rightarrow)c = 31^*$	A1cso* (3)	
(b)	$P(2 < X < 3) = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + 31x \right]_2^3$	M1	
	$\frac{1}{48} \left(\left(\frac{3^3}{3} - 4(3^2) + 31(3) \right) - \left(\frac{2^3}{3} - 4(2^2) + 31(2) \right) \right) = \frac{13}{36} (=\text{awrt } 0.361)$	A1	
		(2)	
	Loss than 3 since $ ^{13} > 0.25$	B1	
(c) (d)	x = 4 leads to the minimum/lowest value of $f(x) / f(x)$ is a positive	(1) B1	
	quadratic	(1)	
(e)	Considers $x = 2$ and $x = 5$ by e.g.	M1	
	• $f(2) = 0.39(58\dot{3}) [= \frac{19}{48}]$ and $f(5) = 0.\dot{3} [= \frac{16}{48}]$ (so $f(2) > f(5)$)		
	• Sketch of $f(x)$ from $x = 2$ to $x = 5$		
	• $x = 2$ is further than $x = 4$ (then $x = 5$)	A1	
	Mode is $x = 2$	(2)	
		[9 marks]	
	Notes		
(a)	1^{st} M1 setting up integral and equating to 1 (condone missing dx) limits not needed		
	2 nd M1 attempting to integrate $f(x)$ at least one term $x^n \to x^{n+1}$ (need not be = 1)		
	Use of integration of $f(x)$ with $F(2) = 0$ and $F(5) = 1$ can score M1M1		
	A1 ^m cso including use of correct limits. There should be at least one line of working between scoring the 2 nd M1 and arriving at the given answer		
	Allow a verification method 1 st M1 setting up integral 2 nd M1 attempting to		
	integrate A1cso use of correct limits to show that it integrates to 1 and co	oncluding	
	that $c = 31$		
(b)	M1 for use of integration of $f(x)$ $x^n \rightarrow x^{n+1}$ with correct limits 2 and 3 (ft (a))	from their	
	A1 allow awrt 0.361 (correct answer scores 2 out of 2)		
(c)	B1 less than 3 with correct reasoning.		
	May use their part (b), but must be consistent with 'less than 3'		
	If the lower quartile is found awrt 2.67, allow $LQ/2.67 < 3$	1 . 1 . 0	
(d)	B1 correct reason why the method does not give the correct mode. Allow a sketch of $f(x) = A \log \alpha \log \alpha $ (<i>Vaila method did not consider the and mintel</i>)		
(e)	M_1 considers end-points		
	A1 mode is 2 cao Answer only scores M0A0. Must have some justificat	ion.	

Question	Scheme	Marks	
Number			
4. (a)	p is small	B1 (1)	
(b)	Let $N =$ number of candles not suitable for sale	(1)	
(0)	$N \sim B(125, 0.02)$	M1	
	$\approx C \sim \text{Po}(2.5)$	A1	
	$P(C \leq 6)$	M1	
	= 0.9858 awrt <u>0.986</u>	A1 (1)	
(c)(i)	H : n = 0.05 $H : n < 0.05$	(4) B1	
	$H_0 \cdot p = 0.05$ $H_1 \cdot p < 0.05$	M1	
	P(D=0) = 0.2146	A1	
	Do not reject H_0 / not significant	M1	
	The manufacturer's claim is not supported/There is not enough	A 1	
	evidence to suggest that the proportion(oe) of candle holders with	AI	
	minor defects is less than 5%/ Charlie's claim is supported	(5)	
(ii)	Impossible to reject H ₀ (since $P(D = 0) > 0.05$)	B1	
		(1)	
(d)	0.95^{50} [=0.0769] or X~B(50, 0.05), P(X = 0) (is still) > 0.05	M1	
	(so still not possible to reject H_0) hence Ashley's change does not	AI	
	make the test appropriate.	(2) [13 marks]	
	Notes		
(a)	B1 correct condition allow 'p is close to 0' allow ' $p < 0.1$ ' or any value less than		
	0.1 (condone $np < 10$ or $np \leq 10$)		
(b)	1^{st} M1 recognising Binomial distribution (may be implied by Po(2.5))		
	1^{st} A1 correct distribution Po(2.5)		
	2 nd M1 writing or using P($C \le 6$) from Poisson distribution 2 nd A1 event 0.086 from correct distribution and 4 (color 0.0858126)		
	^{2nd} A1 awrt 0.986 from correct distribution used (calc : 0.9858126) [NB : Use of binomial gives 0.98678] Answer only 0.9858 or better scores 4		
	out of 4, but answer of 0.986 must see Po(2.5) to award full marks.		
(c)(i)	B1 correct hypotheses in terms of p or π		
	1^{st} M1 writing or using B(30, 0.05) (may be implied by 1^{st} A1)		
	1 st A1 awrt 0.215		
	2^{nd} M1 a correct ft statement consistent with their <i>p</i> -value and 0.05 N	o context	
	needed but do not allow contradicting non contextual comments.		
	2^{nd} A1 correct conclusion in context which must be not rejecting H ₀ .		
	Must use underlined words (oe) No hypotheses then A0		
	Condone e.g. '5% of candle holders have minor defects'		
(ii)	B1 correct reasoning which implies there is no critical region/ H_0 canno	t be rejected	
	Sample size is too small on its own is B0.	č	
(d)	M1 for 0.95^{50} or for X~B(50, 0.05) and P(X = 0) > 0.05		
	A1 test is (still) not appropriate with M1 scored		

Question Number	Scheme	Marks	
5. (a)	$F(3) = 0 \rightarrow \frac{1}{2}(3^2 - 6(3) + a) = 0$	M1	
	a = 9	A1	
	$F(10) = 1 \rightarrow \frac{1}{100(10) - (5)10^2 + c} = 1$	M1	
	$12^{(12)}$ $c = -488$		
(b)	$1_{(-2,-1)} = \frac{1_{(-2,-1)}}{1_{(-2,-1)}} = \frac{1_{(-2,-1)}}{1_{(-$	A1 (4)	
	$\frac{1}{16}(5^2 - 6(5) + "9") = \frac{1}{12}(5+b) \qquad \frac{1}{12}(5+b) = \frac{1}{12}(100(5) - 5(5) + 1400)$	M1	
	b = -2	A1 (2)	
(c)	$P(6 < Y \leq 9) = F(9) - F(6)$	M1 M1	
	$=\frac{1}{12}(9+"-2")-\frac{1}{12}(6+"-2")$	A 1	
	$=\frac{1}{4}$	A1 (3)	
(d)	$f(y) = \frac{1}{12}$	B1	
(e)	9	(1)	
	$E(6Y-5) = [26.5+] \int_{5} (6y-5)'' \frac{1}{12}'' dy$	M1	
	$= [26.5+]\frac{1}{12}[(3y^2-5y)]_5^9$	dM1	
	$= 26.5 + \frac{1}{12} [(3(9^2) - 5(9)) - (3(5^2) - 5(5))]$	dM1	
	$=\frac{233}{6}$	A1 (4)	
		[Total 14]	
(a)	$\frac{\text{Notes}}{1^{\text{st}} \text{ M1 writing or use of F(3)} = 0}$		
	$1^{\text{st}} \text{A1} a = 9 \text{ cao}$		
	2^{nd} M1 writing or use of F(10) = 1 2^{nd} A1 $c = -488$ cao		
(b)	M1 use of F(5) = F(5) $[=\frac{1}{4}]$ or F(9) = F(9) $[=\frac{7}{12}]$ ft their values from (a)		
(c)	A1 $b = -2$ cao 1 st M1 writing or using F(9) – F(6) (may be implied by 2 nd M1)		
	2^{nd} M1 substituting 9 and 6 into F(x) with their value of b		
	allow $\frac{1}{12} (100(9) + 5(9^2) + "-488") - \frac{1}{12} (6 + "-2")$ with their value of b and their value of c		
	A1 $\frac{1}{4}$ oe		
(d)	B1 $\frac{1}{12}$		
(e)	1 st M1 use of $\int_{-\infty}^{9} (6y-5)'' \frac{1}{12}'' dy$ (ignore limits)		
	2^{nd} M1 (dep on 1 st M1) attempt to integrate $(6y-5)''\frac{1}{12}''$ with at least one $y^n \rightarrow y^{n+1}$		
	3^{rd} M1 (dep on 1 st M1) 26.5 + $\int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$		
80.	A1 awrt 38.8 Answer only or correct answer not using given information scores MOM1M1A1		
50:	Answer only or correct answer not using given information scores MUMIMIAI		

Question Number	Scheme	Marks	
6. (a)	$P(17 < W < k) = P(W < k) - P(W < 17) = \frac{53}{60} - \left(1 - \frac{1}{5}\right) = \frac{1}{12}$	M1 A1 (2)	
(b)(i)	$\frac{(b-a)^2}{12} = 75 , \qquad \qquad \frac{b-17}{b-a} = \frac{1}{5} \text{or} \frac{17-a}{b-a} = \frac{4}{5}$	B1, B1	
	$\frac{(b-a)^2}{12} = 75 \to (b-a) = 30 \qquad \qquad \frac{b-17}{30} = \frac{1}{5}$	M1	
	b = 23 and $a = -7$	A1 (4)	
(ii)	$P(W < k) = \frac{k - ("-7")}{"23" - ("-7")} = \frac{53}{60} \text{ or } P(17 < W < k) = \frac{k - 17}{30} = \frac{1}{12} \text{ or } P(W > k) = \frac{"23" - k}{"23" - ("-7")} = \frac{7}{60}$	M1	
	k = 19.5	A1 (2)	
(c)	$P(-5 < W < 5) = \frac{5 - (-5)}{"23" - ("-7")} = \frac{1}{3}$	(2) M1A1ft	
(d)	$E(W^2) = Var(W) + E(W)^2 = 75 + \left(\frac{"23"+"-7"}{2}\right)^2 = 139$	(1) M1 A1 (2)	
		[Total 12]	
	Notes		
(a)	M1 for writing or using $P(W < k) - P(W < 17)$ allow $< or \le 10^{-5}$		
	Allow equivalent expressions e.g. $P(W > 17) - P(W > k) = \frac{1}{5} - \left(1 - \frac{53}{60}\right)$		
	A1 oe condone awrt 0.0833 condone $\frac{1}{12}$ coming from $\frac{13}{12} - 1$ or $\left -\frac{1}{12} \right $		
(b) (i)	1 st B1 correct equation for variance 2 nd B1 either correct probability equation Allow e.g. <i>k</i> in place of $(b - a)$ 1 st M1 eliminating $(b - a)$ which must appear in both equations. A1 both $b = 23$ and $a = -7$ correct answers imply all 4 marks		
(ii)	M1 probability expression using uniform distribution ft their values A1 $k = 19.5$ oe cao		
(c)	M1 for $10/(\text{their } b - \text{their } a)$		
	A1ft $\frac{1}{3}$ oe condone awrt 0.333 (Allow ft $\frac{10}{their(b-a)}$ as exact fraction or	evaluated to	
	3sf or better provided $a < -5$ and $b > 5$)		
(d)	M1 use of $E(W^2) = Var(W) + (E(W))^2$ with values substitued for $Var(W)$ a	nd $E(W)$	
	ft their values of <i>a</i> and <i>b</i> allow any rearrangement. Must have a correct (ft) expression or value for $E(W)$		
	Also allow $\int_{-7^{"}} \frac{1}{23^{"-7^{"}}} w^2 dw$		
	A1 139 cao		

Question	Scheme		
7. (a)	$R \sim Po(8)$		B1
	$P(4 \le R \le 8) = P(R \le 8) - P(R \le 3) = 0.5925 - 0.0424$		M1
	= 0.550	$1 = \operatorname{awrt} \underline{0.550}$	AI (3)
(b)	$H \sim \text{Po}(4)$		B1 (C)
	$P(H \leq 2) = 0.2381$		B1
	$Y \sim B(5, "0.2381")$		M1 M1
	$P(Y=2) = {}^{\circ}C_{2}("0.2381")^{\circ}(1-"0.2381")^{\circ}$		A1
(c)	= 0.250/5 = av	F = number of muffing sold	(5)
(t)	X = number sold in first finteen infinites X = number sold in last forty five minutes	in first 15 minutes	
	-		2.64
	$P(W > X R = 4) = \frac{P(W = 4)P(X = 0) + P(W = 3)P(X = 1)}{P(W = 4)P(X = 1)}$	$F \sim B(4, 0.25)$ P($F > 2$) –	MI
	P(R=4)	P(F = 3) + P(F = 4)	M1
	$\frac{e^2}{4!} \frac{e^2}{0!} + \frac{e^2}{3!} \frac{e^2}{1!} \frac{e^2}{1!}$		
	$=\frac{-4.00.00}{e^{-8}8^4}$	$= C_3(0.25)^3(0.75) + 0.25^4$	M1
	4!		
	13		A1
	$=\frac{1}{256}$	(awrt 0.0508 or awrt 0.0509)	(4)
			[Total 12]
	Notes		
(a)	B1 writing or using Po(8) (may be implied by one correct probabil	lity from 0.5925, 0.0424 0.4530	or 0.0996)
	M1 writing or using $P(R \le 8) - P(R \le 3)$,	
	A1 awrt 0.550 (calc: 0.55016) correct answer scores 3 out of 3		
(b)	1 st B1 writing or using Po(4)		
	2 nd B1 awrt 0.238		
	1 st M1 choosing binomial distribution with $n = 5$ and their p 2 nd M1 ⁵ C ₂ $p^2(1-p)^3$ with 0		
	A1 awrt 0.251		
(c)	1 st M1 attempt at either correct product $P(W = 4)P(X = 0)$ or $P(W = 3)P(X = 1)$		
	from $W \sim Po(2)$ and $X \sim Po(6)$		
	implied by awrt 0.0902×awrt 0.0025 or awrt 0.180×awrt 0.0149 or awrt 0.0029		
	2^{nd} M1 conditional probability with P($R = 4$) from $R \sim Po(8)$ on denominator		
	implied by awrt 0.0573 seen in the denominator of a probability expression		
	3 rd M1 complete expression for the required probability		
	implied (awrt 0.0902×awrt 0.0025+awrt 0.180×awrt 0.0149)/awrt	0.0573 for 3 rd M1	
	A1 allow awrt 0.0508 or awrt 0.0509 from use of tables		
ALT	1 st M1 identifying B(4, 0.25)		
	2^{nd} M1 P(F = 3) + P(F = 4) from B(4, 0.25) 3^{rd} M1 $4p^3q + p^4$ from B(4, 0.25)		

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE