

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P74322A

Publications Code WST02_01_2401_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation. To earn the M mark, the equation (i) should have the correct number of terms

(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - o the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark

- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- *_ means the answer is printed on the question paper
- L means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme						
1 (a)	「Mean	=] 2.95	B1					
	[Variance =] $\frac{2091}{180} - ("2.95")^2$							
	= 2.914 (s2 = 2.930) awrt 2.91 (2.93)							
			(3)					
(b)	The me	The mean is close to the variance						
(a)	W Do	(2)	(1)					
(c)	W~ Po		3.54 4.4					
(i)	L \	[3] =]1 - P(W, 2) = 0.5768 awrt 0.577	M1 A1					
(ii)	P(4 <	< W < 8 = P(W, 7) - P(W, 4) or P(W = 5) + P(W = 6) + P(W = 7)	M1					
		= 0.1728 awrt 0.173	A1					
(1)			(4)					
(d)	<i>X</i> ~N(2		B1					
	P(X)	<19) = $P(Z_{,,,} \frac{18.5-21}{\sqrt{21}})$ [= -0.5455] or						
	$\bigcap_{\mathbf{P}(X)}$	$> 23) = P(Z \frac{23.5 - 21}{\sqrt{21}}) [= 0.5455]$	M1M1A1					
	L \	, , (√21) _r						
	= 0.2912 (calc 0.29268)*							
()	W D/	12 (0 20)	(5) M1					
(e)	$Y \sim B(13, \text{``}0.29\text{''})$							
	$\left[P(Y=5) = \right]^{13} C_5 ("0.29")^5 (1-"0.29")^8 = 0.170465 \text{ (calc } 0.17317) $ awrt 0.17							
		•••	(3)					
(a)	B1	Notes cao allow exact equivalents	Total 16					
(a)	M1	Ft their mean. Using $\frac{\sum fx^2}{180}$ – (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$						
		Allow with a square root – may be implied by awrt 1.71						
	A1cso	awrt 2.91 (2.93) cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible	v voluos					
(b)	B1	calculated, then B0. Condone the use of 'closed' for 'close'	values					
(c)(i)	M1	for $1-P(W, 2)$ or $1-0.4232$						
	A1	awrt 0.577						
	for $P(W, 7) - P(W, 4)$ or $P(W=5) + P(W=6) + P(W=7)$							
(ii)	M1							
(ii)	M1	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216						
	A1	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173						
(ii) (d)	A1 B1	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression.	23 23 5 24					
	A1	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216 awrt 0.173	23, 23.5, 24,					
	A1 B1 M1	or $0.9881-0.8153$ or $0.1008+0.0504+0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (\pm) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5	23, 23.5, 24,					
	M1 M1 A1	or $0.9881 - 0.8153$ or $0.1008 + 0.0504 + 0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (\pm) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546	23, 23.5, 24,					
	A1 B1 M1	or $0.9881 - 0.8153$ or $0.1008 + 0.0504 + 0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen						
	M1 M1 A1	or $0.9881 - 0.8153$ or $0.1008 + 0.0504 + 0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$						
(d)	A1 B1 M1 M1 A1 A1* M1	or $0.9881-0.8153$ or $0.1008+0.0504+0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (\pm) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$ ft their 0.29 (Must be 2 sf or better). Condone B(0.29, 13)						
(d)	A1 B1 M1 M1 A1 A1*	or $0.9881 - 0.8153$ or $0.1008 + 0.0504 + 0.0216$ awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression. for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 2 24.5 for using 19 ± 0.5 or 23 ± 0.5 for a fully correct standardisation expression Implied by awrt ±0.546 awrt 0.291 or 0.293 from correct working seen for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)^8$						

Question Number		Scheme	Marks			
2 (a)	$[P(D<108)=]P(Z<\frac{108-112.4}{\sigma})=0.05$					
	$\Rightarrow \frac{108}{}$	$\frac{3-112.4}{\sigma} = -1.6449$	M1 M1			
		$\sigma = 2.6749 \text{ days (calc } 2.67501)$ awrt $2.67/2.68$	A1			
4.)	7 D/	(25, 0.05)	(3)			
(b)		(25, 0.05)				
	P(J)	(4) =]1 - P(J, 3) = 1 - 0.9659	M1			
		= 0.0341 (calc 0.034090) awrt 0.0341	A1			
			(2)			
(c)	<i>T</i> ~ Po	$5[200 \times "0.0341"] = 6.82 \text{ (calc } 6.8181)$	M1			
	P(T)	$(2) =]1 - P(X, , 1) = 1 - (e^{-"6.82"} + e^{-"6.82"} \times "6.82")$	M1			
		= 0.99146 calc (0.99144) awrt 0.991	dA1			
			(3)			
		Notes	Total 8			
(a) (i)	M1	for standardisation using 108(Condone 107.5), 112.4 and σ set equal to z where 1.5 < $ z $	<2.5			
	M1	for correct equation awrt –1.6449 (Allow awrt 1.6449 if compatible with their equation)				
	A1 awrt 2.67/2.68 NB M1 M0 A1 is possible					
(b)	M1 for $1-P(J, 3)$ or $1-0.9659$					
	A1 awrt 0.0341					
(c)	M1	for writing or using correct Poisson model ft their part (b) May be implied by 0.00853(73	3)			
	3.54	for writing or using $1 - (e^{-"\lambda"} + e^{-"\lambda"} \times "\lambda")$ where $1 < \lambda < 200$ (may be implied by awrt)	0.991)			
	M1	Allow $1-P(X, 1)$ if Poisson distribution is stated or used				
		dep on both method marks being awarded awrt 0.991				
İ	dA1	(NB Binomial gives awrt 0.992 and if no working shown awrt 0.992 will gain M0M0A0] Allow 0.9915 if both M marks are awarded)			

Question Number		Scheme Mark					
3 (a)	The vacuum tubes shatter independently						
	The probability of a vacuum tube shattering is constant						
			(2)				
	$C \sim B(13)$	5,0.35) plus $[P(C_{3}, 91) =]0.0142 \text{ or} [P(C_{3}, 10) =]0.0124 \text{ or}$					
(b)	[P(C)	9)=[0.9876	M1				
	-		M1				
		Critical regions $\begin{bmatrix} 0 \\ , , \end{bmatrix}$ C , 1 or $\begin{bmatrix} 10 \\ , , \end{bmatrix}$ C $\begin{bmatrix} 15 \end{bmatrix}$					
	[0,,] C	C_{1} , 1 and 10,, C_{2} [., 15] plus	Λ1				
	P(C,, 91	P(C 10) = 0.0142 and $P(C 10) = 0.0124$	A1				
			(3)				
(c)	0.0266		B1ft				
` /			(1)				
(d)	[4 is not	in the CR therefore] there is no evidence to reject Rowan's belief	B1ft				
		·	(1)				
(e)	F~B(40	, 0.35)					
	H_0 : $p = 0$	0.35 and H_1 : $p < 0.35$	B1				
	P(F,, 8	(0) = 0.0303 or CR F , 8	M1A1				
		nt evidence to reject H ₀ or significant or 8 lies in the Critical region	M1				
		sufficient evidence to support that the proportion of type B vacuum tubes that					
		when exposed to alternating high and low temperatures is less than 35%	A1				
			(5)				
		Notes	Total 12				
(0)	B1	for one correct reason which must mention tube(s) and shatter/shattering	•				
(a)		or 2 correct reasons not in context					
	B1	for 2 correct reasons which must mention tube(s) and shatter/shattering at least once					
(b)	M1	for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988 Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is see	20				
		for lower CR or C , 1 oe e.g. $C < 2$	211				
	M1	or upper CR C_{10} oe e.g. $C > 9$ Allow other notation and any letter(s) for CR					
	IVII	Do not allow CR written as a probability statement					
		for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)).	Do not				
	A1	allow CR written as a probability statement	Do not				
(a)	B1ft	for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical re	gions" if				
(c)	DIII	seen. If no probabilities for their CR given then the answer must be 0.0266					
		for a correct statement consistent with their CR Must mention Rowan/his/her or a cor					
(d)	B1ft	conclusion based on Rowan's belief with the words highlighted in bold e.g. no evidence and that the man artism (and a properties)					
		suggest that the proportion/probability/number/amount (allow 35% as proportion) that shatter has changed oe	of tubes				
(e)	B1	for both hypotheses correct in terms of p or π					
(•)	M1	for using or writing $P(F, 8)$ or awrt 0.0303					
	A1	for awrt 0.0303 or correct CR Allow F , 8 or $F < 9$ but not if part of a probability sta	atement				
		for a correct conclusion – need not be in context. ft their probability or CR. Ignore hyp					
	M1	do not allow contradicting non contextual comments. May be implied by a correct con					
		statement on its own					
		for a correct conclusion – must be in context, with words highlighted in bold. ft their p					
	A1	or CR only. Independent of hypotheses. Do not allow contradicting statements. Allow					
		probability/number/amount/35% for proportion. Allow decreased for less than 35%					

Number		
4 (a)	1/3 3/20 2/15 -1 2 4	M1 A1
(b)	$\begin{split} & \left[P(G_{,,} 2) = \right] 1 - 2 \times \frac{3}{20} \left[= 0.7 \right] \text{ or } \frac{1}{2} \times 3 \times \left(\frac{2}{15} + \frac{1}{3} \right) \text{ or } \frac{1}{15} \int_{-1}^{2} (g+3) dg [= 0.7] \text{ or } \\ & \frac{1}{30} \times 2^{2} + \frac{1}{5} \times 2 + \frac{1}{6} \left[= 0.7 \right] \\ & \text{ or } \\ & \left[P\left(G_{,,,} \frac{1}{2}\right) \right] = \frac{1}{2} \times 1.5 \times \left(\frac{2}{15} + \frac{3.5}{15} \right) \left[= 0.275 \right] \text{ or } \frac{1}{15} \int_{-1}^{0.5} (g+3) dg [= 0.275] \text{ or } \\ & \frac{1}{30} \times 0.5^{2} + \frac{1}{5} \times 0.5 + \frac{1}{6} \left[= 0.275 \right] \\ & \text{ or } \\ & \left[P\left(\frac{1}{2}_{,,,} G_{,,,} 2\right) = \right] \frac{1}{2} \times 1.5 \times \left(\frac{7}{30} + \frac{1}{3} \right) \left[= 0.425 \right] \text{ or } \frac{1}{15} \int_{0.5}^{2} (g+3) dg [= 0.425] \text{ or } \\ & \frac{1}{30} \times \left(2^{2} - 0.5^{2} \right) + \frac{1}{5} \times \left(2 - 0.5 \right) \left[= 0.425 \right] \end{split}$	M1
	$[P(1,, 2G,, 6 G,, 2) =] \frac{P(\frac{1}{2},, G,, 2)}{P(G,, 2)} = \frac{0.425}{0.7} \text{ or } 1 - \frac{0.275}{0.7} \text{ oe}$	M1M1
	$=\frac{17}{28}$ or 0.607 awrt 0.607	A1 (4)
(c)	$[E(H^2)=]2.4+12^2[=146.4]$	M1
	$\left[E(G) = \right] \int_{-1}^{2} \frac{1}{15} \left(g^2 + 3g \right) dg + \int_{2}^{4} \frac{3}{20} g dg$	M1
	$\left[E(G) = \right] \left(\frac{1}{15} \left(\frac{1}{3} g^3 + \frac{3}{2} g^2 \right) \right)_{-1}^2 + \left(\frac{3}{40} g^2 \right)_2^4$	M1
	$= \frac{1}{15} \left(\frac{8}{3} + \frac{12}{2} + \frac{1}{3} - \frac{3}{2} \right) + \left(\frac{48}{40} - \frac{12}{40} \right) [=1.4]$	dM1
	$\left[E(2H^2 + 3G + 3) = \right] 2 \times "146.4" + 3 \times "1.4" + 3$	M1
	= 300	A1 (6) Total 12

		Notes						
(a)	M1	for correct shape $\left(g = \frac{3}{20}\right)$ must be below $\frac{1}{3}$ with the lines not joining at $x = 2$ and none below/touch the x -axis. Ignore any broken/dotted lines drawn						
	A1	for fully correct graph with labels on the x axis						
(b)	M1	For a correct method to find P(G,, 2) or P(G,, $\frac{1}{2}$) or P($\frac{1}{2}$, G,, 2) May be implied by $0.7 / \frac{7}{10}$ or $0.425 = \frac{17}{40}$ or $0.275 / \frac{11}{40}$						
	M1	for $\frac{p}{0.7}$ where $0 or \frac{0.425}{q} where 0.425 < q < 1 or 1 - \frac{0.275}{r} where 0.275 < r < 1 Allow un-simplified probabilities$						
	M1	For $\frac{P(\frac{1}{2}, G, 2)}{P(G, 2)}$ or a correct ratio of probabilities						
	A1	$\frac{17}{28}$ oe or awrt 0.607						
(c)	M1	for a correct method to find $E(H^2)$						
	M1	for realising $\int xf(x)dx$ on both functions and adding together. Ignore limits						
	M1	for attempting to integrate ($x^n \to x^{n+1}$) at least one part of $xf(x)$						
	dep on previous M1 being awarded. For use of correct limits in one part of xf (xf (xf shown, then this may be implied by 0.5 or 0.9 or 1.4. If integration is incorrect the must be shown.							
	M1	For using $2 \times$ "their $E(H^2)$ "+3"their $E(G)$ +3, provided $E(H^2)$ and $E(G)$ have been shown. NB You may have to check their answer if no working is shown for $2 \times$ "their $E(H^2)$ "+3"their $E(G)$ +3 Cao						
	4 3 4							

Question Number		Scheme				
5(a)	$\frac{\left(a+6\right)^2}{12} = 27$					
	$a = \sqrt{27}$	$x = 12^{2} - 6 \Rightarrow 12^{2}$ or $a^{2} + 12a - 288 = 0 \Rightarrow a = 12^{2}$	A1*			
			(2)			
(b)(i)	$\frac{12-b}{18} =$	$\frac{3}{5}$ or $\frac{b+6}{18} = \frac{2}{5}$	M1			
		b = 1.2	A1			
			(2)			
(ii)	P(-6 < V	$V < "0.6") = \frac{"0.6" + 6}{18}$	M1			
		$=\frac{11}{30}$ or 0.3666	A1ft			
			(2)			
(c)		the point where the wood is cut and x is the distance AC				
	$\frac{x}{2}$ and $\left(\right.$	$\left(\frac{160-x}{2}\right) \qquad L+W=80 \text{ and } LW=975$	M1			
	$\frac{x}{2} \times \left(\frac{160}{2}\right)$	$\left(\frac{0-x}{2}\right) = 975 \implies x = 30 \text{ or } 130$ $L(80-L) = 975 \implies L = 15 \text{ or } 65$	M1			
	P("30"	$< x < "130"$) = $\frac{"130" - "30"}{160} \left[= \frac{5}{8} \right]$ oe $P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right]$ oe	dM1			
		$=\frac{5}{8}$ oe	A1			
			(4)			
		Notes	Total 10			
(a)	M1	for setting up the correct equation. Do not allow verification	1.2			
	A1*	for an un-simplified expression for a leading to $a = 12$ or for a correct 3TQ = 0 leading Condone any letter for a				
(b)(i)	M1	for setting up the correct equation				
	A1					
(ii)	M1					
	A1ft	ft their value for b, provided the answer is between 0 and 1				
(c)	M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$					
		May be implied by a correct equation for the area				
	M1 for a correct equation for area in terms of any letter. Condone an inequality					
	1	dep on previous method mark awarded. For a fully correct method ft their x values pro	vided add			
	dM1	to 160 or 80 Do not ISW	vided add			

6(a) $\begin{bmatrix} 8, 11, 14, 17, 20 \\ [P(even)] = \end{bmatrix} \frac{1}{5} \text{ and } [P(odd)] = \end{bmatrix} \frac{4}{5} \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 8) =] \left(\frac{4}{5}\right)^4 \text{ or } [P(X = 20)] =] \left(\frac{1}{5}\right)^4 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 11) =] 4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3 \text{ or } [P(X = 17)] =] 4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)^3 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 14) =] ^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 14) =] ^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 14) =] ^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 14) =] ^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 \end{bmatrix}$ M1 $\begin{bmatrix} P(X = 14) =] ^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 \end{bmatrix}$ M1 $\begin{bmatrix} X & 8 & 11 & 14 & 17 & 20 \\ P(X = x) & 256 & 256 & 625 & 625 & 625 & 625 \\ 625 & 625 & 625 & 625 & 625 & 625 \\ (0.4096) & (0.4096) & (0.1536) & (0.0256) & (0.0016) \end{bmatrix}$ M1 (b) 1-(1-"0.1536")* > 0.95 or ("0.8464")* or n > log_{0.0364}^{*}(0.05) M1 $\begin{bmatrix} n > 17,96 \text{ or } n > \frac{\log(0.05)}{\log("0.8464")} \text{ or } n > \log_{0.0364}^{*}(0.05) \end{bmatrix}$ M1 $\begin{bmatrix} n > 18 & \text{Notes} & \text{Total 9} \end{bmatrix}$ (a) M1 For at least 2 scores correct and no more than 3 incorrect M1 for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probability M1 for $4 \times (1-p) p^3$ where $0 M1 for 4 \times (1-p) p^3 where 0 M1 for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5) for all 5 probabilities must be attached to the correct total (b) M1 for using 1 - (1-P(Y=0))^p > 0.95 allow = instead of > > condone < < or allow for at least 2 trials for n between 10 and 20 ft their P(X = 14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{0.0564} (0.05) ft their 6 \times (1-p) = 17 and 18 Allow = instead of > > > \infty. condone < < \le 0 and \le 0 is defined by a correct answer ft their 0.8464$	Question Number	Scheme						Marks
		8, 11, 14, 17, 20				M1		
$ [P(X=11)=] 4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3 \text{ or } [P(X=17)=] 4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)^3 $ M1 $ [P(X=14)=] {}^4C_2 \times \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^2 $ M1 $ [P(X=x)] = \frac{256}{625} = \frac{256}{625} = \frac{96}{625} = \frac{16}{625} = \frac{1}{625} = \frac$		[P(even	$=$ $\frac{1}{5}$ and $[P(odd)]$	$=$ $\left]\frac{4}{5}$				M1
			$=$ $\left[\frac{4}{5}\right]^4$ or $\left[P(X=$	$=20)=\left]\left(\frac{1}{5}\right)^4$				M1
X 8 11 14 17 20		P(X=1)	$1) = \int 4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3 \text{ or }$	[P(X=17)	$=$ $4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)$)3		M1
$ \begin{array}{ c c c c } \hline & 625 & 625 & 625 & 625 & 625 & 625 & 625 \\ \hline & (0.4096) & (0.4096) & (0.1536) & (0.0256) & (0.0016) \\ \hline \\ & & & & & & & & & & & & & & & & &$		P(X=1)	$4) = \int_{0}^{4} C_{2} \times \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$	2				M1
$ \begin{array}{ c c c c } \hline & 625 & 625 & 625 & 625 & 625 & 625 & 625 \\ \hline & (0.4096) & (0.4096) & (0.1536) & (0.0256) & (0.0016) \\ \hline \\ & & & & & & & & & & & & & & & & &$		X	8	11	14	17	20	
(b) $ \begin{aligned} &1-(1-\text{"0.1536"})^n > 0.95 \text{ or } (\text{"0.8464"})^n < 0.05 \\ &n > 17.96 \text{ or } n > \frac{\log(0.05)}{\log(\text{"0.8464"})} \text{ or } n > \log_{\text{"0.8464"}}(0.05) \end{aligned} \qquad \text{M1} $ $n = 18 \qquad \qquad \text{A1} $ $(3) $ $n = 18 \qquad \qquad \text{Notes} \qquad \qquad \text{Total 9} $ (a) $ \begin{aligned} &\mathbf{M1} & \text{ for at least 2 scores correct and no more than 3 incorrect} \\ &\mathbf{M1} & \text{ for writing or using } \frac{4}{5} \text{ and } \frac{1}{5} \text{ . May be implied by a correct probability} \end{aligned}$ $\mathbf{M1} & \text{ for } p^4 \text{ where } 0 \mathbf{M1} & \text{ for } 4 \times (1-p) p^3 \text{ where } 0 \mathbf{M1} & \text{ for } 6 \times (1-p)^2 p^2 \text{ where } 0 \mathbf{A1} & \text{ for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total} \mathbf{M1} & \text{ for using } 1-(1-P(Y=0))^n > 0.95 \text{ allow = instead of } >/\geqslant \text{. condone } \text{ trials for } n \text{ between 10 and 20 ft their } P(X=14) 0.8464 \text{ or for the two trials for } n = 17 \text{ and } 18 \text{ Allow = instead of } >/\geqslant \text{. condone } $		P(X=x)	625	625	625	625	625	A1
$n>17.96 \text{ or } n>\frac{\log(0.05)}{\log("0.8464")} \text{ or } n>\log_{"0.8464"}(0.05)$ $n=18$, , ,		, ,		, ,	(6)
n = 18	(b)	1-(1-"0	1536") ⁿ > 0.95 or ("	$(0.8464")^n < 0$	0.05			M1
Notes Total 9		n>17.96	or $n > \frac{\log(0.05)}{\log("0.8464")}$	$-$ or $n > \log_{n}$	0.8464" (0.05)			M1
NotesTotal 9(a)M1For at least 2 scores correct and no more than 3 incorrectM1for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probabilityM1for p^4 where $0 M1for 4 \times (1-p) p^3 where 0 M1for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5)A1for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total(b)M1for using 1-(1-P(Y=0))^n > 0.95 allow = instead of >/\gg. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X=14)M1for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\gg. condone May be implied by a correct answer ft their 0.8464$		n = 18	<u> </u>					A1
(a) M1 For at least 2 scores correct and no more than 3 incorrect M1 for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probability M1 for p^4 where $0 M1 for 4 \times (1-p) p^3 where 0 M1 for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5) A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using 1-(1-P(Y=0))^n > 0.95 allow = instead of >/\geqslant. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X=14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\geqslant. condone May be implied by a correct answer ft their 0.8464$								
M1 for writing or using $\frac{4}{5}$ and $\frac{1}{5}$. May be implied by a correct probability M1 for p^4 where $0 M1 for 4 \times (1-p) p^3 where 0 M1 for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5) A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using 1 - (1-P(Y=0))^n > 0.95 allow = instead of >/>. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X=14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/>. condone May be implied by a correct answer ft their 0.8464$	(0)	M1	For at least 2 sacres as			.moot		Total 9
M1 for p^4 where $0 M1 for 4 \times (1-p) p^3 where 0 M1 for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5) A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using 1 - (1 - P(Y = 0))^n > 0.95 allow = instead of >/\geqslant. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X = 14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\geqslant. condone May be implied by a correct answer ft their 0.8464$	(a)						ity	
M1 for $4 \times (1-p) p^3$ where $0 M1 for 6 \times (1-p)^2 p^2 where 0 or probabilities that add to 1 (at least 2 but not more than 5) A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using 1 - (1 - P(Y = 0))^n > 0.95 allow = instead of >/\geqslant. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X = 14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\geqslant. condone May be implied by a correct answer ft their 0.8464$				-	e implied by u	correct products		
M1 for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least 2 but not more than 5) A1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using 1-(1-P(Y=0))^n > 0.95 allow = instead of >/\geqslant. condone or allow for at least 2 trials for n between 10 and 20 ft their P(X=14) for n > \text{awrt } 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\geqslant. condone May be implied by a correct answer ft their 0.8464$								
for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total (b) M1 for using $1-(1-P(Y=0))^n > 0.95$ allow = instead of $>/>$. condone $ or allow for at least 2 trials for n between 10 and 20 ft their P(X=14) for n > awrt 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/>. condone May be implied by a correct answer ft their 0.8464$			for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least 2 but not more than 5)$					
probabilities must be attached to the correct total (b) M1 for using $1-(1-P(Y=0))^n > 0.95$ allow = instead of $>/\gg$. condone $ or allow for at least 2 trials for n between 10 and 20 ft their P(X=14) for n > \text{awrt } 17.96 or n > \frac{\log(0.05)}{\log("0.8464")} ft their 0.8464 or n > \log_{"0.8464"}(0.05) ft their 0.8464 or for the two trials for n = 17 and 18 Allow = instead of >/\gg. condone May be implied by a correct answer ft their 0.8464$		WII						
trials for n between 10 and 20 ft their $P(X = 14)$ for $n > \text{awrt } 17.96 \text{ or } n > \frac{\log(0.05)}{\log("0.8464")}$ ft their $0.8464 \text{ or } n > \log_{"0.8464"}(0.05)$ ft their $0.8464 \text{ or for the two trials for } n = 17 \text{ and } 18$ Allow = instead of $>/\geqslant$. condone $ May be implied by a correct answer ft their 0.8464$	_	Δ. Ι						a table but
trials for <i>n</i> between 10 and 20 ft their $P(X = 14)$ for $n > \text{awrt } 17.96 \text{ or } n > \frac{\log(0.05)}{\log("0.8464")}$ ft their $0.8464 \text{ or } n > \log_{"0.8464"}(0.05)$ ft their $0.8464 \text{ or for the two trials for } n = 17 \text{ and } 18$ Allow = instead of $>/\geqslant$. condone $ May be implied by a correct answer ft their 0.8464$	(b)	М1	for using $1-(1-P(Y=$	$= 0)$ $\int_{0.95}^{n} > 0.95$ all	low = instead of	$f > / \geqslant$. condone	≼ or allow for</td <td>r at least 2</td>	r at least 2
0.8464 or for the two trials for $n = 17$ and 18 Allow = instead of $>/\geqslant$. condone $ May be implied by a correct answer ft their 0.8464$	(0)	1711	trials for <i>n</i> between 10	and 20 ft thei	P(X = 14)			
Allow = instead of $>/>$. condone $ May be implied by a correct answer ft their 0.8464$							t their	
							18464	
A1 Cao (Do not allow any inequality for this mark)								7.0404

Question Number	Scheme						
7(a)	$f(x) = [k](a+3bx^2-4x^3)$						
	[k](6bx	$-12x^2)=0$			M1		
	9b-27 =	$=0 \Rightarrow b=3 \text{ or } 6 \times 10^{-3}$	$3 \times 1.5 - 12 \times 1.5^2 = 0 \Rightarrow \therefore b = 3$	3 *	A1*		
					(3)		
(b)	a+3-1	$-4=0$ oe $\Rightarrow a=$	2]		B1*		
			-		(1)		
(c)		k(2×	$2+3\times2^3-2^4-4)=1 \left[\Rightarrow k \right]$	$z = \frac{1}{8}$	M1		
		F(x) = 0.5	F(x) = 4	F(x) = 0			
	`	4) = 0.3988 5) = 0.5078	F(1.4) = 3.1904 F(1.5) = 4.0625	F(1.4) = -0.8(096) F(1.5) = 0.06(25)	M1A1		
		9<0.5<0.508	3.1904 < 4 < 4.0625	-0.8(096) < 0 < 0.06(25)			
		re, the median lies	therefore, the median lies	therefore, the median lies	A1		
		veen 1.4 and 1.5	between 1.4 and 1.5	between 1.4 and 1.5			
		NATIVE M1A1A1					
	$x_1 = 2.91$	$1 x_2 = 1.49$	$x_3 = -0.70$ So $x = 1.49$ as 1	$1 \leqslant x \leqslant 2$	M1 A1		
	1.4<1.4	9<1.5 [therefore, t	the median lies between 1.4 and	1.5]	dA1		
					(4)		
()	3.51	Ι	Notes		Total 8		
(a)	M1		$ \frac{\text{fferentiate } x^n \to x^{n-1} \text{ Condone}}{x^n \to x^{n-1} \text{ Condone}} $		2 nd M1)		
	M1 A1*		entiating twice and equating to ze				
(b)	B1*	for correctly using $E(1) = 0$ to form an equation in a (May be seen in part (a)) and substitution of					
(c)	M1	for using $F(2) = 1$ to form a correct equation in terms of k only. May be seen in any part of the					
	M1	M1 For a calculation of F(1.4) or F(1.5) correct to 2 sf (If F(x) =0 used then allow 1 sf or better) (Allow F(1.4) = awrt 3.190 k or F(1.5) = awrt 4.063 k)					
	A1 For a calculation of $F(1.4)$ and $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or better)						
	dA1 Dependent on previous A1. For a correct comparison and conclusion. Allow comparisons in						
	words e.g. For F(X) = 0 a comment about a change in sign implies a comparison with 0 ALTERNATIVE M1 For solving the given equation. May be implied by 2.91 or 1.49 or -0.70						
	A1	For $r = 1.49$ identified as being in the range specified by the CDF. May be implied by rejecting					
	the other solutions						
	dA1 Dependent on previous A1. For a correct comparison and conclusion						

Examples of other acceptable comparisons for 0.5

F(1.4) < 0.5 < F(1.5), Median lies between the range

F(1.4) < F(median) < F(1.5), so median lies between 1.4 and 1.5

F(1.4) < F(Q2) < F(1.5), therefore Q2 lies between 1.4 and 1.5

F(1.4) < F(m) < F(1.5), 1.4 < m < 1.5

F(1.4) < 0.5, F(1.5) > 0.5, so median of X lies between 1.4 and 1.5

Allow equivalent comparisons for 4 and 0