

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024 Question Paper Log Number P74320A Publications Code WST01_01_rms_20240307 All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation. To earn the M mark, the equation

(i) should have the correct number of terms

(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working
- awrt means answers which round to

- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme				
1 (a)	2×36=	72 $8 \times 4 = 32$	M1 A1		
	(2	(2)			
(b)	[13]+	$\frac{204-184}{120} \times 2 \qquad \qquad [13] + \frac{(204.5-184)}{120} \times 2$	M1		
		$=\frac{40}{3}$ = awrt 13.3	A1		
(c)	Symmet	rically distributed/No skew as the mean \sim median	(2) B1		
(0)	Symmetrically distributed/No skew as the mean \approx median				
(d)	-	$2 + \frac{120}{2} [= 220]$	M1		
	$\frac{'220'}{408} \times \frac{'}{200}$	<u>219'</u> <u>407</u>	M1		
		r 0.2901 awrt 0.29	A1		
			(3)		
		Notes For any equivalent method to find either frequency	Total 8		
(a)	M1	Maybe implied by either correct frequency Also maybe implied by two frequencies which add to 104 Also maybe implied by a correct scale on the fd axis, at least 3 labels			
	A1	For 72 and 32			
(b)	M1 For any equivalent method to find the median e.g. $\frac{Q_2 - 13}{15 - 13} = \frac{204 - 184}{304 - 184}$ or $\frac{15 - Q_2}{Q_2 - 13} = \frac{304 - 204}{204 - 184}$ allow working downwards $[15] = \frac{(304 - 204)}{204 - 184} \times 2$				
		-2			
	A 1	allow working downwards $[15] - \frac{(304 - 204)}{120} \times 2$			
(c)	A1 B1	allow working downwards $[15] - \frac{(304 - 204)}{120} \times 2$ awrt 13.3 For a correct identification of skew [which must either be symmetric/no skew or (sl skew] with a correct supporting reason. Condone mean < median so negative skew Allow use of 'their median' in the comparison provided 'their median' 13.2 Allow Q ₁ = awrt 10.8 or awrt 10.9 and Q ₃ = awrt 15.1 and Q ₂ - Q ₁ > Q ₃ - Q ₂ so negative shew	egative skew.		
(c) (d)		allow working downwards $[15] - \frac{(304 - 204)}{120} \times 2$ awrt 13.3 For a correct identification of skew [which must either be symmetric/no skew or (sl skew] with a correct supporting reason. Condone mean < median so negative skew Allow use of 'their median' in the comparison provided 'their median' 13.2	egative skew. ad to review		
	B1	allow working downwards $[15] - \frac{(304 - 204)}{120} \times 2$ awrt 13.3 For a correct identification of skew [which must either be symmetric/no skew or (sl skew] with a correct supporting reason. Condone mean < median so negative skew Allow use of 'their median' in the comparison provided 'their median' 13.2 Allow Q ₁ = awrt 10.8 or awrt 10.9 and Q ₃ = awrt 15.1 and Q ₂ - Q ₁ > Q ₃ - Q ₂ so ne Comments referring only to the diagram (being symmetrical therefore no skew) ser For a correct method to find the number of plants between 8cm and 14cm (may be	egative skew. ad to review		

Question Number	Scheme					
2 (a)(i)	Mean =	71.83 awrt 71.8	B1			
(ii)	Standard deviation = $\sqrt{\frac{62802}{12} - \left(\frac{862}{12}\right)^2}$ or variance = $\frac{62802}{12} - \left(\frac{862}{12}\right)^2$					
	√73.47	= 8.571 8.57 * (to 3s.f.)	A1*			
				(3)		
(b)	$S_{xx} = 6280$	$12 - \frac{862^2}{12} \left[= \frac{2645}{3} = 881.66 \right]$	M1			
	$r = \frac{1}{\sqrt{413}}$	<u>512.67</u>	M1			
	= 0.8489		A1			
	- 0.0402		711	(3)		
(c)	Mean =	$\frac{5}{9} \times ('71.8' - 32)$	M1	(0)		
(0)	= 22.11.		Alft			
		$d_{\text{wrt}} = \frac{5}{9} \times 8.57$	M1			
	= 4.76	-	A1			
		. awit 1 .70		(4		
(d)	r = '0.8489' / same (as for x and y)					
	<i>r</i> not affected by (linear) coding oe					
		Notes	Tota			
(a)(i)	B1	awrt 71.8 Allow $\frac{431}{6}$ oe				
		awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for M		(2) 1 12		
(a)(i) (ii)	B1 M1	awrt 71.8 Allow $\frac{431}{6}$ oe				
		awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.	11 only			
		awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s)	11 only			
		awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).	11 only			
	M1	awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s)	11 only			
	M1	awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).	11 only			
(ii)	M1 A1*	awrt 71.8 Allow $\frac{431}{6}$ oe A correct method to find the standard deviation or the variance ft their mean for M Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0). To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$	11 only			
(ii)	M1 A1* M1	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S_{xx} (implied by awrt 882)	11 only			
(ii)	M1 A1* M1 M1	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx}	11 only			
(ii) (b)	M1 A1* M1 M1 A1	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx} awrt 0.849	11 only			
(ii) (b)	M1 A1* M1 M1 A1 M1 A1ft	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)	11 only			
(ii) (b)	M1 A1* M1 M1 A1 M1 M1	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)	11 only			
(ii) (b)	M1 A1* M1 M1 A1 M1 A1ft	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.83^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1A correct method to find the standard deviation	11 only			
(ii) (b)	M1 A1* M1 M1 A1 M1 A1ft M1	awrt 71.8Allow $\frac{431}{6}$ oeA correct method to find the standard deviation or the varianceft their mean for MAlso allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$ Must see at least one simplification of working and the given answer 8.57.e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s) $\sqrt{\frac{62802}{12} - 71.8^2}$ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12} - 71.833^2}$ A correct method to find S_{xx} (implied by awrt 882)A correct method to find PMCC using their value of S_{xx} awrt 0.849A correct method to find the mean ft their mean in part (a)awrt 22.1 ft their mean in part (a)A correct method to find the standard deviation(do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)	11 only			

Question Number		Scheme	Marks	
3 (a)	$1-p, \frac{7}{8}$	and $\frac{9}{10}$ in the correct place on tree diagram	B1	
			(1)	
(b)	$\frac{1}{8}p + \frac{1}{10}$	(1-p) = 0.11	M1 A1ft	
	$p = \frac{2}{5}$		A1	
			(3)	
(c)	$\frac{2}{5} \times \frac{1}{8} =$	$\frac{1}{20}$	M1 A1ft	
			(2)	
(d)	P(Y12	$R) = \frac{\frac{2}{5} \times \frac{7}{8}}{1 - 0.11} \text{or } P(Y12 R) = \frac{\frac{2}{5} \times \frac{7}{8}}{\frac{2}{5} \times \frac{7}{8} + \frac{3}{5} \times \frac{9}{10}}$	M1	
	$=\frac{35}{89}$		A1	
			(2)	
		Notes	Total 8	
(a)	B1	For a fully correct tree diagram with all 3 correct labels. Allow if $1 - p$ is seen and crossed out/replaced with a numerical probability.		
(b)	M1 For $\frac{1}{8}p$ or $\frac{1}{10}$ ' $(1-p)$ ' seen in an equation for p			
	A1ft	For a fully correct equation in p or correct ft equation based on their tree diagram		
	A1	oe correct answer scores 3 out of 3		
(c)	M1	For $p \times \frac{1}{8}$ ft their <i>p</i> , provided <i>p</i> is a probability		
	A1ft	For a correct answer ft their p , provided p is a probability. Correct answer scores 2 out of 2		
(d)	M1	For a correct ratio of probabilities. Can ft their <i>p</i> , provided <i>p</i> is a probability		
	A1	For $\frac{35}{89}$ (Allow awrt 0.393)		

Question Number		Scheme	Marks				
4 (a)	LQ = 28	or UQ = 48	B1				
	'48'+1.5	('48'-'28')[=78]	M1				
		so, 90 is an outlier*	A1*				
	70 7 10		(3)				
(b)	$b = \frac{1733}{1667}$	$\frac{5.6}{7.6}$ [=1.04]	M1				
		-b'(42.2)[=-5.72]	M1				
		2+1.04f *	A1*				
	5 017	2 • 1.0 • 1	(3)				
(c)	For ever marks	For every extra mark (oe) in French / <i>f</i> , Spanish / <i>s</i> goes up (oe) by [on average] 1.04 marks					
			(1)				
(d) (i)	~ -	$5.72 + 1.04 \times 55 = 51.48$ awrt 51.5	M1 A1				
(ii)	s = -5	$5.72 + 1.04 \times 18 = 13$	A1 (2)				
			(3)				
(e)	• 5	The first estimate is an interpolation/The second estimate is an extrapolation 55 is within the range of data/18 is not within the range of data 55 is closer to the mean/18 is further away from the mean	M1				
	so 51.5 is the more reliable estimate						
		Notes	(2) Total 12				
(a)	B1	For either LQ or UQ correct (may be seen in calculation for M1)	10tal 12				
(")			heir LO				
(4)	M1 A1*	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the For both LQ and UQ correct and identifying 90>78 or 90 is an outlier	heir LQ				
(b)	M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the transformation of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the transformation of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the transformation of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the transformation of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_2)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_3)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_3)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_3)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_3)$ ft transformation of $Q_3 + 1.5 \times (Q_3 - Q_3)$ ft tr	heir LQ				
	M1 A1* M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the For both LQ and UQ correct and identifying 90>78 or 90 is an outlier Answer is given so no incorrect working can be seen For a correct method to find the gradient	heir LQ				
	M1 A1* M1 M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)	neir LQ				
(b)	M1 A1* M1 M1 A1*	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04f$					
	M1 A1* M1 M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$ For a correct numerical interpretation of the gradient in context which must include a least once					
(b)	M1 A1* M1 M1 A1*	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$ For a correct numerical interpretation of the gradient in context which must include a least onceFor a correct substitution into the regression equation.May be seen in (i) or (ii) or implied by one correct answer					
(b) (c)	M1 A1* M1 M1 A1* B1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04f$ For a correct numerical interpretation of the gradient in context which must include least onceFor a correct substitution into the regression equation.					
(b) (c)	M1 A1* M1 M1 A1* B1 M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$ For a correct numerical interpretation of the gradient in context which must include least onceFor a correct substitution into the regression equation.May be seen in (i) or (ii) or implied by one correct answerawrt 51.5 Allow 51 or 5213 or awrt 13.0					
(b) (c) (d) (i)	M1 A1* M1 M1 A1* B1 M1 A1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > thFor both LQ and UQ correct and identifying 90>78 or 90 is an outlierAnswer is given so no incorrect working can be seenFor a correct method to find the gradientFor a correct method to find the intercept (division by 11 is M0)Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04f$ For a correct numerical interpretation of the gradient in context which must include least onceFor a correct substitution into the regression equation.May be seen in (i) or (ii) or implied by one correct answerawrt 51.5 Allow 51 or 52	<u>marks</u> at				

Question Number	Scheme					
5 (a)	$P(X < 38.8) = P\left(Z < \frac{38.8 - 40}{4}\right) \left[= P\left((Z < -0.3)\right)\right]$					
		=1-0.6179=0.3821*	A1*			
			(2)			
(b)	P(Qualit	fy) = $1 - (0.3821)^3$ or $1 - 0.3821 + 0.3821 \times (1 - 0.3821) + 0.3821^2 \times (1 - 0.3821)$	M1			
		[=0.9442]				
	$P(X > 44) = P\left(Z > \frac{44 - 40}{4}\right) \left[= P((Z > 1))\right]$					
		[=1-0.8413]=0.1587	A1			
	$P(X > 44 \text{ on 2nd attempt} Qualify) = \frac{0.3821 \times '0.1587'}{'0.9442'}$					
	0.06422 awrt 0.0642					
			(5)			
		Notes	Total 7			
(a)	M1	For standardising using 38.8, 40 and 4 (allow \pm)				
	A1*	A1* Must see 1 – 0.6179 or we must see 0.38209 or 0.38208 or better Answer is given so no incorrect working can be seen (but condone poor probability notation)				
(b)	M1	For a correct method to find the probability of qualifying				
	M1	For standardising using 44, 40 and 4 (implied by $1 - 0.8413$ or awrt 0.1587)				
	A1	awrt 0.16				
	M1	For a correct ratio of probabilities ft their 0.1587 and their 0.9442. Use of 0.6179 in the denominator is M0				
	A1	awrt 0.0642				

Question Number			Scheme	Marks		
6 (a)	P(B A)					
	$0.3 = \frac{P}{2}$	$\frac{P(B \cap A)}{x} \Longrightarrow P(B \cap B) = P(A) + P(B) - P(B)$	(A) = 0.3x	M1		
	$P(A \cup B)$	$\mathbf{B} = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}$	$(A \cap B)$ '	M1		
		$x + y - 0.3x \Longrightarrow 0.65 =$				
	14x + 20	0y = 13*		A1*		
				(3)		
(b)(i)		P(B) = P(B) + P(C) or	$\mathbf{P}(B \cap C) = 0$	M1		
	$0.85 = \frac{1}{2}$	x+2y		A1		
(ii)	Attempt	to solve the 2 equat	ons simultaneously	M1		
	x = 0.5	A1				
				(4)		
<i>(</i>)	P(B A)	=0.3 and	$P(A) \times P(B) = '0.5' \times '0.3'$ and $P(A \cap B) = 0.3 \times '0.5'$ or	24		
(c)	P(B) =	M1				
		A1ft				
		50,7	and <i>B</i> are statistically independent	(2)		
			Notes	Total 9		
(a)	M1	Use of $P(B A) = \frac{P(A)}{A}$	$\frac{B \cap A}{P(A)}$ assuming independence is M0 e.g. P(B)	$P \cap A$ = $P(B) \times P(A)[=xy]$		
	May be implied by $P(B \cap A) = 0.3x$ (may be seen on a Venn diagram)			m)		
	M1 Use of $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ with substitution of $P(A \cup B)$, $P(A)$ and $P(A)$ (the equation may be seen in a Venn diagram)					
	A1*	0.65 = x + y - 0.3x implies M1M1 A1* Answer is given so no incorrect working can be seen				
(b)(i)	M1	-	$P(B) + P(C)$ or sight of $P(B \cap C) = 0$			
\-/\ - /	A1		equation in x and y which need not be simplified.			
(ii)	M1		2 equations simultaneously. Either a correct sub			
	A1	For $x = 0.5$ and y	-			
		For finding all of th labelled) ft their va	e probabilities needed for a test for independence lues of x and y	(probabilities must be		
(c)	M1 $P(B A)$ and $P(B)$ or $P(A), P(B)$ and $P(A \cap B)$					
	For $P(A \cap B)$ we must see working shown					
	A1ft	For a correct ft cond				

Question Number	Scheme						
7 (a)	$\frac{k+4}{8} = 1$	1 $[k = 4*]$	B1*				
			(1)				
	x	1 2 3 4					
(b)	$\mathbf{P}(X = .$	x) $\frac{1}{13}$ $\frac{7}{26} - \frac{1}{13} = \frac{5}{26}$ $\frac{15}{26} - \frac{7}{26} = \frac{4}{13}$ $1 - \frac{15}{26} = \frac{11}{26}$	M1 M1 A1				
(c)	4		B1ft				
			(1)				
(d)	$E(X) = 1 \times 1$	$\frac{1}{13} + 2 \times \frac{5}{26} + 3 \times \frac{4}{13} + 4 \times \frac{11}{26} = \frac{40}{13}$ $\frac{Y}{P(Y=y)} = \frac{1}{13} = \frac{5}{26} = \frac{4}{13} = \frac{11}{26}$	M1				
	$\mathrm{E}(X^2) = 1^2$	$\times \frac{1}{13} + 2^{2} \times \frac{5}{26} + 3^{2} \times \frac{4}{13} + 4^{2} \times \frac{11}{26} = \frac{135}{13} = E(Y) = 7 \times \frac{1}{13} + 20 \times \frac{5}{26} + 33 \times \frac{4}{13} + 46 \times \frac{11}{26} = 34$	M1				
	$\operatorname{Var}(X) =$	$= \left[\frac{135}{13} - \left(\frac{40}{13}\right)^{2} \right] = \frac{155}{169} \right]$ $E(Y^{2}) = 7^{2} \times \left[\frac{1}{13} + 20^{2} \times \left[\frac{5}{26} + 33^{2} \times \left[\frac{4}{13} + 46^{2} \times \left[\frac{11}{26} + 23^{2} \right] \right] \right]$ $[= 1311]$	M1				
	Var(13 <i>X</i>	$X - 6) = 13^2 \times \frac{155}{169}$ Var $(13X - 6) = 1311 - 34^{12}$	M1				
	= 155						
		Notes	(5) Total 10				
		$\frac{k+4}{2} = 1$ oe Allow verification method $\frac{4+4}{2} = 1$ provided they conclude $k = 4$	1014110				
(a)	B1*	$\frac{1}{8} = 1$ oe Allow verification method $\frac{1}{8} = 1$ provided they conclude $k = 4$					
(b)	M1	M1For a correct method to find one probability from $x = 2, x = 3$ or $x = 4$ (implied by any one correct probability from $x = 2, x = 3$ or $x = 4$)M1For a correct method to find a second probability from $x = 2, x = 3$ or $x = 4$					
	M1						
	(implied by any two correct probabilities from $x = 2$, $x = 3$ or $x = 4$) For a fully correct probability distribution						
	Al Need not be in a table, but 1, 2, 3 and 4 must be associated with correct probability						
(c)	B1ft	Must be consistent with the highest probability in their distribution in part (b)					
(d)	M1	For a correct method to find E(X) (implied by awrt 3.08) ft their table use of $\sum xF(x)$	<i>x</i>) is M0				
		or for a correct probability distribution for $13X - 6$ ft their probabilities in (b) For a correct method to find E(X ²) (implied by awrt 10.4) ft their table use of $\sum x^2 F$	(x) is M0				
	M1	or for a correct method to find E(Y) ft their table					
	M1	Use of $E(X^2) - E(X)^2$ ft their $E(X^2)$ and their $E(X)$ or					
	1	for a correct method to find $E(Y^2)$ ft their table					
		Use of $13^2 Var(X)$ ft their $Var(X)$					
	M1	Use of $13^2 \operatorname{Var}(X)$ ft their $\operatorname{Var}(X)$ or use of $\operatorname{E}(Y^2) - \operatorname{E}(Y)^2$ ft their $\operatorname{E}(Y^2)$ and their $\operatorname{E}(Y)$					

Question Number		S	cheme		Marks
	P(X >	u+2k)=0.2	or	$\mathbf{P}(X < \mu - 2k) = 0.2$	
8 (a)		$\langle \mu + 2k \rangle = 0.2$ $\langle \mu + 2k \rangle = 0.8$	or	$P(X > \mu - 2k) = 0.2$ $P(X > \mu - 2k) = 0.8$	M 1
	$\frac{\mu+2k-6}{6}$	$\frac{\mu}{2} = 0.8416$	or	$\frac{\mu - 2k - \mu}{6} = -0.8416$	M1 A1
	k = 2.52	248		awrt 2.52	2 A1
					(4)
(b)	$P\left(Y > \frac{3}{2}\right)$	$\mu \end{pmatrix} \Rightarrow \mathbf{P} \left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma} \right)$	$ \Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sigma}\right) $		M1
	$\mu = \frac{3}{2}\sigma^2$	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\left(\frac{3}{2}\sigma^{2}\right)}{\sigma}\right)$	$\left\ \left[= P\left(Z > \frac{3}{4}\sigma\right) \right] \right\ $		
	-	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sqrt{\frac{2\mu}{3}}}\right) = \begin{bmatrix}1\\1\end{bmatrix}$	$\mathbf{P}\left(Z > \frac{1}{2}\sqrt{\frac{3\mu}{2}}\right)$		M1
	0	k and $2\mu = 3\sigma^2$ 5 or $\frac{1}{2}\sqrt{\frac{3\mu}{2}} = 1.5$ or	$-2\sigma^2 - 6\sigma$		M1
	$\frac{-0}{4} = 1.$	$3 \text{ of } \frac{1}{2}\sqrt{\frac{1}{2}} = 1.3 \text{ of } \frac{1}{2}\sqrt{\frac{1}{2}} = 1.3 \text{ of } \frac{1}{2}\sqrt{\frac{1}{2}} = 1.3 \text{ of } \frac{1}{2}\sqrt{\frac{1}{2}}$	SO = 0O		1011
	$\mu = 6 \text{ onl}$	y, $\sigma = 2$ only			A1 A1
					(5)
			Notes		Total 9
(a)	M1	For any of the given Also may be implied	x	ements which may be seen on a diagram	
<u> </u>			100 awit ± 0.07 scen		
	M1		ing μ and 6 and set	ting = to z value, where $0.8 < z < 0.9$	
	M1 A1	For standardising usi Implied by $(\pm)\frac{k}{3} = 0$	ing μ and 6 and sett (±)0.84 or better		r better
		For standardising usi Implied by $(\pm)\frac{k}{3} = 0$ For a fully correct sta	ing μ and 6 and sett (±)0.84 or better andardisation with a	ting = to z value, where $0.8 < z < 0.9$	
(b)	A1	For standardising usi Implied by $(\pm)\frac{k}{3} = 0$ For a fully correct sta	ing μ and 6 and sett (±)0.84 or better andardisation with a (25) Answer only 2	ting = to z value, where $0.8 < z < 0.9$ a compatible z value. $ z $ must be 0.8416 or	
(b)	A1 A1	For standardising usi Implied by $(\pm)\frac{k}{3} = 0$ For a fully correct sta awrt 2.52 (Allow 2.5) For standardising usi	(±)0.84 or better andardisation with a 25) Answer only 2 ang $\frac{3}{2}\mu$, μ and σ	ting = to z value, where $0.8 < z < 0.9$ a compatible z value. $ z $ must be 0.8416 or	s M1M1A1A1
(b)	A1 A1 M1	For standardising usi Implied by $(\pm)\frac{k}{3} = 0$ For a fully correct sta awrt 2.52 (Allow 2.5) For standardising usi	ing μ and 6 and sett (±)0.84 or better and ardisation with a (25) Answer only 2 ang $\frac{3}{2}\mu$, μ and σ $\mu = \frac{3}{2}\sigma^2$ into their st	ting = to z value, where $0.8 < z < 0.9$ a compatible z value. $ z $ must be 0.8416 or .52 is M1M1A0A1 Answer only 2.5248 i tandardisation or setting up two equations	s M1M1A1A1
(b)	A1 A1 M1 M1	For standardising usi Implied by $(\pm)\frac{k}{3} = 0$ For a fully correct sta awrt 2.52 (Allow 2.5 For standardising usi For substitution of μ	ing μ and 6 and sett (±)0.84 or better and ardisation with a (25) Answer only 2 ang $\frac{3}{2}\mu$, μ and σ $\mu = \frac{3}{2}\sigma^2$ into their st	ting = to z value, where $0.8 < z < 0.9$ a compatible z value. $ z $ must be 0.8416 or .52 is M1M1A0A1 Answer only 2.5248 i tandardisation or setting up two equations	s M1M1A1A1

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom