

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72906A Publications Code WST03_01_MS_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question		Scheme		Marks	
1 (a)(i)	Meth		Method 2		
	[<u>y</u> =	$\left[\frac{847}{100}\right] = 8.47$	847+100×1000 [=100847]	M1	
		$\overline{z} = 1000 + \frac{847}{100} = 1008.47 *$	$\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47^*$	A1*	
(ii)	$\left[s_x^2\right]$	$= s_{y}^{2} = \left] \frac{13510.09 - 100 \times "8.47"^{2}}{99} \right]$	$\begin{bmatrix} s_x^2 = \end{bmatrix} \frac{101707510.1 - \frac{"100847"^2}{100}}{99}$	M1	
		= 64	·	A1	
				(4)	
(b)	H_0 :	$\mu_x = 1010$ $H_1: \mu_x \neq 1010$		B1	
				(1)	
(c)	$\frac{\overline{X}-}{"8"}$	$\frac{1010}{\sqrt{100}} = -1.96 \text{ oe } \frac{\overline{X} - 1010}{"8"/\sqrt{100}} =$	1.96 oe	M1 B1	
	$\overline{X} =$	1008.432 $\bar{X} = 1011.568$ awr	t 1008 and 1012(or 1011)	A1	
	\overline{X} ,,	"1008.432" \bar{X} "1011.568"		A1ft	
				(4)	
(d)	-	8.47 is not in the critical region		M1	
	The	machine does not need to be stoppe	ed /reset	A1ft	
(-)	T4 1		((2) B1	
(e)	It is reasonable since the sample size is (reasonably) large				
			Notes	(1) Total 12	
(a)(i)	M1	For 8.47 or $\frac{847}{100}$ or $\frac{847+100\times1}{100}$	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen	·	
	A1*	cso correct solution including $\overline{x} =$	and=1008.47 allow alt notation for \overline{x} but must ref	er to x not	
	2.64	y and must not be just x eg E(X), μ_x	, mean of x		
(ii)	M1				
		1	47 Allow for answer of 1064		
	A1	Cao do not ISW Allow 64.00	47 Allow for answer of 1064		
(b)	A1 B1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in t			
(b)		Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in a Mark (c) and (d) together	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$)		
		Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in a Mark (c) and (d) together	47 Allow for answer of 1064		
(b) (c)	B1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X}		
	B1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in a Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calc	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$	hey have	
	B1 M1 B1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calcard a one tail hypotheses in (b)	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t	-	
	B1 M1 B1 A1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca one tail hypotheses in (b) For both limits 1008 or better and 10	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t	()	
	B1 M1 B1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t	y) w other	
	B1 M1 B1 A1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow m Allow writing in the form "1008.432	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t D12 or better seen. (condone 1011from correct working ir figures(not z value). Allow use of < and > also allow tion eg [1012, ∞], (∞ , 1008] allow [1012, ∞], [∞ , (c) is awarded. For a correct comment compatible with	bow other 1008] h their	
(c)	B1 M1 B1 A1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = \pm 1.96 or better seen (Calca one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow m Allow writing in the form "1008.432 ends. If no clear CR it is M0A0 dep on M1 awarded. Correct conclus	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t D12 or better seen. (condone 1011from correct working ir figures(not <i>z</i> value). Allow use of < and > also allow tion eg [1012, ∞], (∞ , 1008] allow [1012, ∞], [∞ , (c) is awarded. For a correct comment compatible with nean of <i>x</i>) is in or out of their CR " < 1008.47 < "1011.568" etc but if in middle it must ion consistent with comparing 1008.47 with their CR(b) b) ow other 1008] h their have both allow	
(c)	B1 M1 B1 A1	Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow no Allow writing in the form "1008.432 ends. If no clear CR it is M0A0 dep on M1 awarded. Correct concluss interval/ range etc). If it is in the CR	47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $0010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t D12 or better seen. (condone 1011from correct working ir figures(not <i>z</i> value). Allow use of < and > also allow tion eg [1012, ∞], (∞ , 1008] allow [1012, ∞], [∞ , (c) is awarded. For a correct comment compatible with mean of <i>x</i>) is in or out of their CR " < 1008.47 < "1011.568" etc but if in middle it must	b) b) ow other 1008] h their have both allow	

	SC	If the CR in (c) is of the form "1008.432" $< \overline{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B1	Any suitable comment about the sample being large eg <i>n</i> is large

Question			S	cheme							Marks
	Athl	ete	Α	В	С	D	Ε	F	G	Н	
2 (a)	Ran	k SBT	4	2	1	3	5	6	8	7	M1
	FP		1	2	3	4	5	6	7	8	
	$\sum d^2$	= 9 + 0 + 4 +	1 + 0 + 0 +	1+1 [=	16]					<u> </u>	M1
		- <u>6("16")</u> <u>8(63)</u>								awrt 0.81	dM1 A1
<u> </u>			-								(4)
(b)		$\rho = 0, H_1: \rho > 0$		an							B1
		al Value $r_s =$									B1
		ot reject H ₀ or nce of a positi			does not	lie in th	e critical	l region	or there	is no	M1
	There	is no evidence on for these a	ce of a pos		rrelatior	i betwee	en seasor	ı's best	time and	d finishing	AIIt
											(4)
(c)	$r = -\frac{1}{\sqrt{2}}$	0.22517 0.1286875×0	5 0.55275								M1
		34428								awrt 0.844	A1
											(2)
(d)	Critic	al Value $r = 0$	0.7887 or	CR: r	0.788	7					M1
		re is evidence for these athle	_	tive cor	relation	betweer	season?	's best t	ime and	finishing	A1 ft
											(2)
					Note						Total 12
(a)	M1	attempt to ran	ik seasonal	best time	e (at least	four cor	rect), Mag	y be imp	lied by \sum	$d^2 = 16$	
	M1	M1 Attempt to find the difference between each of the ranks (at least 3 correct) and evaluatine May be implied by awrt 0.81 NB if no ranks for SBT it is M0								ng $\sum d^2$	
	dM1 dependent on 1 st M1. Using $1 - \frac{6 \sum d^2}{8(63)}$ with their $\sum d^2$										
	A1 $\frac{17}{21}$ or awrt 0.81(0)										
	SC for reverse rankings May score M1M1dM1A0 order 5 7 8 6 4 3 1 2 $\sum d^2 = 158$										
(b)	B1 both hypotheses correct. Must be in terms of ρ (allow something that looks like rho eg p). I attached to H ₀ and H ₁								Must be		
	B1	critical value	of 0.8333	Sign sl	hould ma	tch there	H_1 or r_s				
	M1 contradicting non contextual comments. If no CV or test statistic given or the test value of then it is M0								or CV > 1		
	A1ft	correct conclute to positive co						d their st	ated CV.	Conclusion	n must refer
	SC	For use of two	o-tailed test	t:			-				
	SC May score B0B1M1A0 CV allow 0.881) M1 correct method used										
(c)	1111										
(c)	A1	awrt 0.844									

M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to
A1ft positive correlation, seasonal best or time and finishing time. Do not allow contradicting comments.
if the test value or $ CV > 1$ then it is M0

Question			Scheme		Marks		
3 (a)	<u>86×3</u>	— or —	4×300		M1		
	120		200		A 1		
	21.5 8	and 278.5			A1 (2)		
(1-)	H ₀ : N	Taking a claim a	nd age are independe	ent (not associated)			
(b)	$H_1: M$	laking a claim a	nd age are not indepe	ndent (associated)	B1		
		Observed	Expected	$\frac{(O-E)^2}{E}$			
		14	"21.5"	endent (associated) $\frac{\frac{(O-E)^2}{E}}{\frac{(14-"21.5")^2}{"21.5"}} = 2.6162$ $\frac{(286-"278.5")^2}{"278.5"} = 0.20197$	M1		
	286 "278.5" $\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$						
		L	-"2.616"+"0.2019	n	M1		
		9.941		awrt	t 9.94 A1		
		(2-1)(3-1) = 2	$\mathbf{v}^2 = \mathbf{o} \mathbf{o} \mathbf{f} \mathbf{o} \mathbf{l}$		B1		
	2 ,		R : $X^2 \dots 9.21[0]$		B1ft		
		e CR/significant	-	sufficient evidence to suggest that mak	^{ing a} dA1ft		
	Ciuiii	ns not independ			(7)		
			Ν	otes	Total 9		
(a)	M1	A correct metho	d for finding one expec	cted value. Implied by one correct value.			
	A1		or both 21.5 and 278.5		1 1		
(b)	B 1		eses correct. Must men "connection" is B0	tion claim and age at least once. Use of "re	lationship" or		
	M1	A correct metho	d for finding both cont	ributions to the χ^2 value or awrt 2.62 or av	vrt 0.202 Allow		
	IVII			lay be implied by awrt 9.94			
	M1	Adding their two	values to 7.123 (may	be implied by a full χ^2 calculation, with a	at least 3 correct		
		•	alues. Do not ISW)				
	A1	awrt 9.94					
	B1		× •	orrect critical value of 9.21 or better			
	B1ft			edom common ones $v = 3$ is 11.345			
	dA1ft	dA1ft Independent of hypotheses but dependent on both M marks being awarded. We will ft their test statistic and CV only. A correct contextual conclusion compatible with their values, which has the words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/ not associated. Do not allow contradicting statements.					
Full calcul	ations f						
(24-14	$(4.33)^2$	$(176 - 185.67)^2$	$(48-50.17)^2$ (6	$\frac{(52-649.83)^2}{649.83} + \frac{(14-"21.5")^2}{21.5} + \frac{(286-7)^2}{21.5}$	$(278.5'')^2$		
eg14	33	185.67	50.17	649.83 + 21.5 + 21	78.5		
or awrt 6	$52 + a^{-1}$	wrt 0.5+awrt 0.	09 + awrt 0.01 + awrt	2.62+0.20			
or $\frac{24^2}{14.33}$	$+\frac{176^2}{185.6}$	$\frac{1}{7} + \frac{48^2}{50.17} + \frac{652}{649}$	$\frac{2^2}{83} + \frac{14^2}{"21.50"} + \frac{286}{"278}$	$\frac{5^2}{.5''}$ - 1200			
	0.10	165.02					
or awrt 4	<u>J.19 + a</u>	awrt 166.83 + awr	t 45.92 + awrt 654.17	+ awrt 9.116 + awrt 293.702 – 1200			

Questi	ion	Scheme	Marks
4 (a		$H_0: B(4, 0.5)$ is a suitable model	
		H_1 : B(4, 0.5) is not a suitable model	B1
		Expected frequencies 12.5, 50, 75, 50, 12.5	M1 A1
		$\sum (O-E)^2 (15-"12.5")^2 (10-"12.5")^2$	
		$\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + \dots + \frac{(10 - "12.5")^2}{"12.5"}$	N/1
			M1
		or $\sum \frac{O^2}{E} - N = \frac{15^2}{"12.5"} + \dots + \frac{10^2}{"12.5"} - 200$	
		=10.84 (or 10.8)	A1
		v = 4	B1
		$\chi_4^2(0.05) = 9.488 \Longrightarrow \mathbf{CR} \dots 9.488$	B1
		Sufficient evidence to say that the research students claim is not supported	A1ft
(1)		[0, 15, 1], (2, 2), (0, 2), (2, 2), (4, 10)	(8)
(b)		$\frac{[0 \times 15 +]1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10[= 360]}{260}$	M1
		$\frac{360}{200 \times 4} = 0.45 $ *	A1*
		200×4	(2)
(c)		H_0 : Binomial is a suitable model	
		H_1 : Binomial is not a suitable model	B1
		v = 3	B1
		$\chi_3^2(0.05) = 7.815 \implies CR \dots 7.815$	B1ft
		No significant evidence to say that the binomial is not a reasonable model	B1ft
			(4)
T		Notes	Total 14
(a)	B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	,
		For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or	
	M1		
		$4 \times 0.5^{4} \times 200 [= 50]$ or $6 \times 0.5^{4} \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8	
	A1		eded)
	A1	$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if need	eded)
	A1 M1	$4 \times 0.5^{4} \times 200[=50] \text{ or } 6 \times 0.5^{4} \times 200[=75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	eded)
	A1 M1	$4 \times 0.5^{4} \times 200 [= 50] \text{ or } 6 \times 0.5^{4} \times 200 [= 75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8	eded)
	A1 M1	$4 \times 0.5^{4} \times 200[=50] \text{ or } 6 \times 0.5^{4} \times 200[=75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	eded)
	A1 M1 A1	$4 \times 0.5^{4} \times 200 [= 50] \text{ or } 6 \times 0.5^{4} \times 200 [= 75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8	eded)
	A1 M1 A1 B1	$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV at	nd their test
	A1 M1 A1 B1	$4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV and statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value of	nd their test Allow in
	A1 M1 A1 B1 B1	$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV as statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the	nd their test (Allow in en must say
	A1 M1 A1 B1 B1 A1ft	$4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV and statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value of	nd their test (Allow in en must say
(b)	A1 M1 A1 B1 B1 A1ft M1	$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV as statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is bino A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8	nd their test (Allow in en must say
	A1 M1 A1 B1 B1 A1ft M1 A1*	$4 \times 0.5^{4} \times 200 [= 50] \text{ or } 6 \times 0.5^{4} \times 200 [= 75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV as statistic only. A correct conclusion based on their test statistic value and their χ^{2} critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p	nd their test (Allow in en must say mial)
	A1 M1 A1 B1 B1 A1ft M1 A1* B1	$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if new $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV as statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is bino A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8	nd their test (Allow in en must say mial) (0.45,4)
(c)	A1 M1 A1 B1 B1 A1ft M1 A1*	$4 \times 0.5^{4} \times 200 [= 50] \text{ or } 6 \times 0.5^{4} \times 200 [= 75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV as statistic only. A correct conclusion based on their test statistic value and their χ^{2} critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial of finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B	nd their test (Allow in en must say mial) (0.45,4)
(c)	A1 M1 B1 B1 A1ft M1 A1* B1 B1	$4 \times 0.5^{4} \times 200 [= 50] \text{ or } 6 \times 0.5^{4} \times 200 [= 75] \text{ May be implied by correct answer 10.84 or 10.8}$ For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if new $\sum \frac{(O-E)^{2}}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^{2}}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV at statistic only. A correct conclusion based on their test statistic value and their χ^{2} critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binom A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B v = 3 This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -	nd their test (Allow in en must say mial) (0.45,4) - 1)

Question		Scheme	Marks					
5 (a)		$: \mu_A = \mu_B$	B1					
5 (u)	H_1	$: \mu_A > \mu_B$ oe	DI					
	Se -	$=\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$	M1					
	7 =	$=\pm\frac{1377-1368}{\sqrt{\frac{17.8^2}{50}+\frac{18.4^2}{40}}}$						
	~	-17.8^2 18.4 ²	M1					
		$\sqrt{50} + 40$						
	=	= ± 2.339 awrt ±2.34	A1					
	On	e tailed c.v. $ Z = 2.3263$ or CR: Z, -2.3263 or Z2.3263	B1					
	In	CR/Significant/Reject H ₀	dM1					
	Su	fficient evidence to support that the mean <u>yield</u> from plants using fertiliser <u>A</u> is	A1ft					
	gre	ater than the mean <u>yield</u> from plants using fertiliser <u>B</u>						
ALT	fin	ding the CL con get P1M1M1A0P1M1A1 unless test statistic given	(7)					
ALI		ding the CI can get B1M1M1A0B1M1A1 unless test statistic given						
	aw	ard M1 for $z = \pm \frac{D}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$ dep on first M1 where 2.3 , z , 2.4						
		$\sqrt{\frac{17.6}{50} + \frac{18.4}{40}}$						
		y be implied by $/D = 8.949$						
(b)		pected profit per plant						
	A٠	$3 \times 1.377 - \frac{75}{50}$ B: $3 \times 1.368 - \frac{50}{40}$	M1					
	<i>A</i> :	$\pounds 2.63(1)$ B: $\pounds 2.85(4)$	A1 dA1					
	Claire should use fertiliser <i>B</i>							
		Notes	Total 10					
(a)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ If A and B not u	ised the					
		letter must be defined For a correct attempt to find the se or se ² Condone slip in sample sizes May be implied by						
]	M1	se = awrt 3.85 or se^2 = awrt 14.8. Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097						
	M1	For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18.4 rather th and 18.4 ² . Allow for a p value of 0.0006 or our t 0.0007	nan 17.8 ²					
	A1	and 18. 4^2 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097 awrt = ± 2.34 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097						
	B1	\pm 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test stat	istic					
		dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compati						
	dM1	their test statistic and CV only - need not be contextual but do not allow contradicting non co	ntextual					
		comments. ft their <i>z</i> value and CR only. A correct contextual statement compatible with their test statistic	and CV					
A	A1ft	with context of yield (at least once) and A and B						
		NB id they give a <i>p</i> -value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1						
		A correct method to find the profit per n plants or m kg for either fertiliser A or fertiliser B	`					
(b)]	M1	$n(3 \times 1.377 - \frac{75}{50})$ or $n(3 \times 1.368 - \frac{50}{40})$ or $m(3 - \frac{75}{50} \times 1.377)$ or $m(3 - \frac{50}{40} \times 1.377)$	269)					
			308))					
		where <i>n</i> and $m \neq 0$ Implied by one correct value for <i>A</i> or <i>B</i>						
		must have 2 values which can be compared. ie using same <i>n</i> or <i>m</i> . Profit per <i>n</i> plant £2.63(1) £2.85(4) <i>n</i> or profit per <i>m</i> kg awrt £1.91 <i>m</i> and awrt £2.09 <i>m</i> (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp) (2dp) or cost per <i>m</i> kg awrt £1.00 m (2dp)						
	A1	awrt ± 0.91 <i>m</i> or number plants per $\pm y$ awrt $0.38y$ and awrt $0.35y$	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>					
1		awrt £0.91 <i>m</i> or number plants per £y awrt 0.38y and awrt 0.35 y Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits105.24 and 114.16) gain M1A1						
	lA1	dependent on 1 st A1 being awarded. For a correct statement.	54444 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Question		Scheme	Marks						
6 (a)	$\left[\overline{x} = \frac{8}{3}\right]$	$\frac{06.4}{36} =]22.4$	B1						
	"22.4"	"22.4"± 2.3263× $\frac{0.4}{\sqrt{36}}$							
	(22.24.	, 22.55) awrt (22.2, 22.6)	A1						
	NB ans	wers which are awrt (22.2, 22.6) gain full marks							
(b)	[The C distrib	entral Limit Theorem is not required as] the original population is normally	(4) B1						
			(1)						
(c)	22.5 is	within the confidence interval	B1 ft						
	So no 1	reason to doubt the manufacturers claim	dB1 ft						
			(2)						
(d)	$\overline{Y} \sim N$	$\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$	B1						
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$	M1						
		= 0.1038 (Calculator gives 0.10295) awrt $0.103 / 0.104$	A1						
			(3)						
ALT	$P(\overline{Y} <$	$848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$	B1 M1						
		= 0.1038	A1						
		Notes	Total 10						
(a)	B1	For 22.4							
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with 1.2 < z < 2.6							
	B1	For z value = 2.3263 or better seen (Calculator gives 2.3263479)							
	A1	awrt (22.2, 22.6) This does not imply the B1							
(b)	B1	For reference to the data is modelled by normal distribution							
(c)	B1 ft	ft their CI For a comment on whether 22.5 (or it) is or is not in their CI allow eg range : Allow "22.24" < 22.5 < " 22.6" Answer must be compatible with their CI	for CI						
	dB1 ft	Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe							
(d)	B1	for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have \overline{Y} or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850, 2.5)$ seen or							
	M1	For \pm (a correct standardisation) implied by a correct answer							
	A1	awrt 0.103 to 0.104							

Question		Scheme	Marks
7 (a)	Let $P =$	time to serve a customer at a standard checkout	
	$Q = P_1 +$	$+P_2 + P_3 \qquad [Q \sim] N(720, 1200)$	B1
	P(Q < 6	$660) = P\left(Z < \pm \frac{660 - 720''}{\sqrt{1200''}}\right) \left[= P(Z < -1.732)\right]$	M1
	= 0.041	8 (Calculator gives 0.04163) <u>awrt 0.041 / 0.042</u>	A1
			(3)
ALT		$[Q \sim] N\left(12, \frac{1}{3}\right)$	
		$P(Q<11) = P\left(Z < \pm \frac{11 - "12"}{\sqrt{"\frac{1}{3}"}}\right) \left[= P(Z < -1.732)\right]$	
(b)	Assume	the time taken to serve customers is independent	B1 (1)
(c)	R - time	e to serve a customer at an express checkout	(1)
		$+P_2 + P_3) - (R_1 + + R_7)$ [S ~]N(20,1648)	M1 A1
	P(S > 0)	$P(Z > \pm \frac{0-20}{\sqrt{1648}}) = P(Z > -0.492)$	M1
		9 (Calculator gives 0.6888) <u>awrt 0.688 / 0.689</u>	A1
ALT	For the 1	M1A1M1	
	M1 for	$N\left(\frac{1}{3},\right)$	
	A1 for N	$N\left(\frac{1}{3},\frac{103}{225}\right)$	
		$\pm \frac{0 - \frac{1}{3}}{\sqrt[n]{103/225}"}$	
	M1 for	$\pm \frac{/3}{\sqrt{103/\pi}}$	
		$\sqrt[10]{225}$	
			(4)
		Notes	Total 8
(a)	B1	For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in standardisation	
	M1	For standardising using 660, their mean \neq 240 or 4 and their standard deviation \neq 20 or	5
		distribution given the mean and sd must be correct in the standardisation. Allow \pm star	nd
	A1	awrt 0.041 or awrt 0.042	
(b)	B1	A correct assumption. Must have context of customers or time and independence(allow	v random)
(c)	M1	For N(±20,) or N $\left(\frac{1}{3},\right)$ maybe awarded in standardisationFor N(±20, 1648) or N $\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisation	
	A1		
	M1	For standardising using 0 and mean of ± 20 or $\pm 1/3$ and their standard deviation. The implied by baying just the mean on the numerator. Allow \pm stand	0 may be
	A1	implied by having just the mean on the numerator Allow \pm stand awrt 0.688 to 0.689	
	484		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom