

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P72072A

Publications Code WST01_01_MS_2301

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

1 (a) Time taken (t minutes) $5-10$ $10-14$ $14-18$ $18-25$ Frequency (f) 10 16 24 35	25 – 40 15				
1 (a)	15				
Frequency (f) 10 16 24 35	1.5	B1			
		(1)			
(b) $10 + 16 + (2 \times 6)$ or $10 + 16 + \frac{24}{2}$ or $\frac{x - 26}{50 - 26} = \frac{16 - 14}{18 - 14}$		M1			
		A 1			
= 38		(2)			
(c) $\left[\sum_{t} ft = \right] 7.5 \times 10 + 12 \times 16 + 16 \times 24 + 21.5 \times '35' + 32.5 \times '15' [= 1891]$		M1			
		IVII			
Mean = $\frac{1891}{100}$ = 18.91		A1			
100		(2)			
$41022 (1901)^{\frac{1}{2}}$ $41022 100 \times 119 01 \times $		(2)			
(d) Standard deviation = $\sqrt{\frac{41033}{100} - \left(\frac{1891}{100}\right)^{\frac{2}{100}}}$ or $\sqrt{\frac{41033 - 100 \times '18.91'^{2}}{99}}$		M1			
= 7.262 or 7.298 awrt 7.26 or	awrt	A1			
7.3[0]					
15 15 25		(2)			
$[LQ =]10 + \frac{15}{16}(14 - 10)[= 13.75] \qquad [LQ =]10 + \frac{15.25}{16}(14 - 10)[= 1$	$0 + \frac{15}{16}(14 - 10)[= 13.75] \qquad [LQ =] 10 + \frac{15.25}{16}(14 - 10)[= 13.8125]$				
(e) $Q_1 - 10 = 25 - 10_{1-13,75}$ $Q_1 - 10 = 25.25 - 10_{1-13,81}$	$\frac{Q_1 - 10}{14 - 10} = \frac{25 - 10}{26 - 10} \left[= 13.75 \right] \qquad \text{or } \frac{Q_1 - 10}{14 - 10} = \frac{25.25 - 10}{26 - 10} \left[= 13.8125 \right]$				
or $\frac{Q_1 - 10}{14 - 10} = \frac{25 - 10}{26 - 10} [= 13.75]$ or $\frac{Q_1 - 10}{14 - 10} = \frac{25.25 - 10}{26 - 10} [= 13.81]$	$\frac{14-10}{14-10} - \frac{26-10}{26-10} [-13.73] \qquad \qquad 0 = \frac{14-10}{14-10} = \frac{13.8123}{26-10} = \frac{13.8123}{14-10} = \frac{13.8123}{14-1$				
or $\frac{Q_1 - 14}{14 - 10} = \frac{25 - 26}{26 - 10} [= 13.75]$ or $\frac{Q_1 - 14}{14 - 10} = \frac{25.25 - 26}{26 - 10} [= 13.85]$	$\frac{Q_1 - 14}{4 - 10} = \frac{25 - 26}{26 - 10} \left[= 13.75 \right] \qquad \text{or } \frac{Q_1 - 14}{14 - 10} = \frac{25.25 - 26}{26 - 10} \left[= 13.8125 \right]$				
IQR = 23-'13.75' IQR = 23-'13.8125'		M1			
= 9.25 = awrt 9.19		A1 (2)			
Notes		(3) Total 10			
(a) R1 for 35 and 15 (If answers given are in both the table and answer lines the	nen mark the a				
given in the table)					
(b) M1 for $10 + 16 + (2 \times 6)$ or $10 + 16 + \frac{24}{2}$ or $\frac{x^2 + 26}{50 - 26} = \frac{10^{-14}}{18 - 14}$	for $10 + 16 + (2 \times 6)$ or $10 + 16 + \frac{24}{2}$ or $\frac{x - 26}{50 - 26} = \frac{16 - 14}{18 - 14}$				
A1 Cao					
(c) M1 A correct method for finding $\sum ft$ May be implied by 1891 Allow one	A correct method for finding $\sum ft$ May be implied by 1891 Allow one error				
A1 18.91 Allow 18.9					
(d) M1 for a correct calculation of the standard deviation ft their mean					
A1 awrt 7.26 or awrt 7.3 if using <i>n</i> – 1	4 27 26				
for $10 + \frac{15}{16}(14 - 10)$ or $14 - \frac{1}{16}(14 - 10)$ or $\frac{Q_1 - 10}{14 - 10} = \frac{25 - 10}{26 - 10}$ or $\frac{Q_1 - 14}{14 - 10} = \frac{25 - 10}{14 - 10}$	$\frac{4}{0} = \frac{25 - 26}{26 + 10}$				
(e) M1 16° 16° 16° $14-10$ $26-10$ $14-10$ $26-10$ 0.75 0.75 0.75 0.75 0.75					
or $10 + \frac{13.25}{16}(14-10)$ or $14 - \frac{0.75}{16}(14-10)$ or $\frac{Q_1 - 10}{14-10} = \frac{23.25-10}{26-10}$	or $10 + \frac{15.25}{16}(14-10)$ or $14 - \frac{0.75}{16}(14-10)$ or $\frac{Q_1 - 10}{14-10} = \frac{25.25 - 10}{26-10}$ or $\frac{Q_1 - 14}{14-10} = \frac{25.25 - 2}{26-10}$				
M1 UQ – LQ ft their LQ provided LQ < UQ	17 10	20 10			
A1 For 9.25 or awrt 9.19 if $n + 1$ is used					

Question	_	Scheme		Marks
2 (a)	5,50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\frac{5}{8} & \frac{3}{8}}{\frac{8}{13}} & \frac{5}{13} \\ \frac{\frac{7}{13}}{\frac{6}{13}} & \frac{6}{13}$	B1 B1 B1
(b)	$\frac{5}{9} \times \frac{4}{8} + \frac{4}{9}$			M1 A1 (2)
(c)	$\frac{5}{9} \times \frac{4}{8} \times \frac{1}{1}$	$\frac{8}{3} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13} = \frac{61}{234}$ oe		M1 A1 (2)
(d)	$\frac{\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13}}{\frac{61}{234}} = \frac{\frac{20}{117}}{\frac{61}{234}} = \frac{40}{61} \text{ oe}$			M1 A1ft A1
		Notes		(3) Total 10
(a)	B1	Notes for $\frac{5}{8} \& \frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375	or 62.5% & 3	Total 10 37.5%
(a)	B1 B1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5%	awrt 0.385 c	Total 10 37.5% or awrt
(a)		for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2%	awrt 0.385 c	Total 10 37.5% or awrt
(a) (b)	B1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538	awrt 0.385 c	Total 10 37.5% or awrt
	B1 B1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ ' $\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6%	awrt 0.385 c	Total 10 37.5% or awrt
	B1 B1 M1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ oe Allow awrt 0.556 or awrt 55.6% for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are provi	awrt 0.385 c	Total 10 37.5% or awrt
(b)	B1 B1 M1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ oe Allow awrt 0.556 or awrt 55.6% for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities and $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13} + \frac$	awrt 0.385 c	Total 10 37.5% or awrt
(b)	B1 B1 M1 A1 M1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$, ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$, $\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6% for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probability of Allow awrt 0.261 or awrt 26.1% for $\frac{a}{234}$ oe Allow awrt 0.261 or awrt 26.1% where numerator < denominator and 0 < part (c) < 1	awrt 0.385 c	Total 10 37.5% or awrt 2 or awrt
(b) (c)	B1 B1 M1 A1 A1	for $\frac{5}{8}$ & $\frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & 61.5% & awrt 38.5% for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 53.8% or awrt 46.2% for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'f their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$ $\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6% for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probability of Allow awrt 0.261 or awrt 26.1% for $\frac{61}{234}$ oe Allow awrt 0.261 or awrt 26.1%	awrt 0.385 c	Total 10 37.5% or awrt 2 or awrt

Question		Scheme Marks		
3 (a)	$E(X) = 2a + 3 \times 0.4 + 4(0.6 - a) = [3.6 - 2a]$			M1 A1
				(2)
(b)	0 < a < 0	0.6 oe		B1
	$2 \times 0.6 +$	$3 \times 0.4[=2.4]$ or $3.6 - 2 \times 0.6[=2.4]$	Alternative	
	and		0 > -2a > -1.2	M1
		$4 \times 0.6[=3.6]$ or $3.6 - 2 \times 0[=3.6]$	3.6 > 3.6 - 2a > 2.4	
	2.4 < E(<i>X</i>) < 3.6		A1
()	T7 (T7)	P(W ²) P(W) ²		(3)
(c)		$= \mathrm{E}(X^2) - \mathrm{E}(X)^2$		
	$E(X^2)$	=]4a+3.6.+9.6-16a[=13.2-12a]		M1 A1
	Var(X)	$= '(13.2-12a)'-('3.6-2a')^2$		M1
		2.4a - 0.32 = 0		A1
	'2.	$\frac{4'\pm\sqrt{'2.4'^2-4\times'-4'\times'-0.32'}}{2\times'-4'}$		M1
	<i>a</i> =	2×'-4'		IVII
	$a=\frac{1}{5}$			A1
	5	5		AI
		Notes		(6) Total 11
(a)	M1	1	roducts correct	10tal 11
(u)	M1 for an attempt to find $E(X)$ with 2 out of the 3 products correct A1 for $2a+1.2+4(0.6-a)$ oe			
(1.)	This may be seen as two separate parts e.g. $a > 0$ and $a < 0.6$. Allow the use of $<$ or $>$ for			' ≥ for < or >
(b)	We allow this to be written in words e.g. a is between 0 and 0.6			
	M1	for a correct method for finding the lower and upper end of the range. May be implied by $2.4 < E(X) < 3.6$ or sight of 2.4 and 3.6		
	A1	Allow e.g. 2.4,, 3.6–2a,, 3.6		
	NB 2.4 < E(X) < 3.6 or 2.4, $3.6-2a$, 3.6 scores 3/3			
(c)	M1	An attempt at an expression for $F(Y^2)$ with 2 terms correct. May be seen in an attempt at		
	A1	a correct expression for $E(X^2)$ May be seen in an attempt at $Var(X)$ Does not have to be fully simplified, allow $4a + 3.6 + 9.6 - 16a$ or better		
	M1	use of $Var(X) = E(X^2) - E(X)^2$ ft their $E(X^2)$ and their part (a)		
	A1	a correct 3TQ e.g. $25a^2 - 15a + 2 = 0$		
		correct method for solving their 3TQ e.g. (5a -	-2)(5a-1)=0	
	3.54	May be implied by $a = \frac{1}{5}$ and $a = \frac{2}{5}$		
	If the 3TQ is incorrect then a correct substitution of their values into the quadratic and c are both negative, allow the omission of negatives in 4ac and allow a correct in the denominator) or a complete method using completing the square or a correct must be seen before their values of a			single value
	A1	$a = \frac{1}{5}$ oe and $a = \frac{2}{5}$ oe Allow any letter for a		

Question		Scheme	Marks	
4 (i)(a)	n+a=-	$\frac{7}{25}$ oe $q + r = \frac{1}{5}$ oe $p + r = \frac{8}{25}$ oe	M1 M1	
+ (1)(α)	$P \cdot q - f$	25 q r = 5 p r = 25 q r = 100	M1	
	2p+2q	$+2r = \frac{7}{25} + \frac{1}{5} + \frac{8}{25} \left[= \frac{4}{5} \right] *$	A1* (4)	
(i)(b)	eg p+q+r+s=1			
	$n=\frac{1}{2}$	e $q = \frac{2}{25}$ oe $r = \frac{3}{25}$ oe $s = \frac{3}{5}$ oe	A1 A1	
	5	$\frac{q-25}{25}$ $\frac{3-5}{5}$ $\frac{3-5}{5}$	A1 A1	
			(5)	
(ii)	$\frac{x}{x+5}$	$\frac{1}{x} = \frac{x^2 + 5(x+5)}{x(x+5)} \text{or} \frac{x}{x+5} + \frac{5}{x} = \frac{x+5-5}{x+5} + \frac{5}{x}$	M1	
(11)	x+5 x	$x(x+5) \qquad x+5 x \qquad x+5 \qquad x$	1411	
	$-x^2 + 5x$	x + 25 5 5	М1	
	$={x^2+}$	$\frac{x+25}{-5x}$ oe or $=1-\frac{5}{x+5}+\frac{5}{x}$	M1	
		$\frac{25}{+5x}$ or as $x^2 + 5x + 25 > x^2 + 5x$ P(C) + P(D) > 1 or As $x + 5 > x$ then		
	$-1+\frac{1}{x^2}$	${+5x} \text{ of as } x + 5x + 25 \ge x + 5x + 1 $	A1	
	5 5	$\frac{5}{x} \Rightarrow -\frac{5}{x+5} + \frac{5}{x} > 0 \text{ So } P(C) + P(D) > 1$	AI	
	x+5 x	$x \rightarrow x + 5 x \rightarrow x + 5 x$		
	$P(C \cup D)$	$P(C \cap D) > 0$	A1 cso	
			(4)	
	NID	Notes	Total 13	
	NB	In (i) Allow the use of exact decimals throughout and mark (a) and (b) together		
(i)(a)	M1	for $p+q = \frac{7}{25}$ oe or $p+q = P(A)$		
	M1	for $q+r=\frac{1}{5}$ oe or $q+r=P(B)$		
	M1	for $p+r = \frac{8}{25}$ oe or $p+r = P[(A \cap B') \cup (A' \cap B)]$		
	A1*	we must see $2p + 2q + 2r = \frac{7}{25} + \frac{1}{5} + \frac{8}{25}$ and no errors		
		any correct equation involving at least two of p , q , r and s . May be implied by two	correct	
(i)(b)				
	A1 for $\frac{2}{25}$ or 0.08 oe This mark may be awarded in part (a)			
	A1	for $\frac{3}{25}$ or 0.12 oe This mark may be awarded in part (a)		
	A1	for $\frac{3}{5}$ oe This mark may be awarded in part (a)		
	SC	for one correct value M0 A1 A0 A0 A0		
		For an attempt to add $P(C)$ and $P(D)$ as $x^2 = 5(x+5)$ May be implied by	$x^2 + 5x + 25$	
(ii)	For an attempt to add P(C) and P(D) e.g. $\frac{x^2}{x(x+5)} + \frac{5(x+5)}{x(x+5)}$ May be implied			
(11)	1411	$1 - \frac{5}{1 - \frac{5}{1$		
		x+5 x		
	M1	$1 - \frac{5}{x+5} + \frac{5}{x}$ For $\frac{x^2 + 5x + 25}{x^2 + 5x}$ oe or $1 - \frac{5}{x+5} + \frac{5}{x}$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	A1	for recognising that $P(C) + P(D)$ is > 1		
	A1 cso a fully correct solution showing that <i>C</i> and <i>D</i> cannot be mutually exclusive			

(b)(i) $ P(L < Q_3) = 0.75 \text{ gives } \frac{Q_3 - 4.5}{0.4} = 0.67 \text{ or } P(L < Q_1) = 0.25 \text{ gives } \frac{Q_1 - 4.5}{0.4} = -0.67 \text{ M1 B1} $ $ [Q_3 =]4.768 \text{ awrt } 4.77 \text{ or } Q_1 = 4.232 \text{ awrt } 4.23 \text{ awrt } 4.23 \text{ A1} $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ B1 fit } (4) $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ B1 fit } (4) $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ B1 fit } (4) $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ B1 fit } (4) $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ B1 fit } (4) $ $ [Q_1 =]^4.232^* \text{ awrt } 4.23 \text{ or } [Q_3 =]^4.768^* \text{ awrt } 4.77 \text{ awrt } 4.77 \text{ awrt } 4.18 \text{ awrt } 4.28 awrt $	Question		Scheme	Marks	
$ \begin{array}{c} = P(Z < -1.6) = 1 - 0.9432 \text{or} 1 - 0.94320 \dots = 0.0348 \text{awtt} 0.0348 \\ \hline (b)(i) \\ P(L < Q_3) = 0.75 \text{gives} \frac{Q_3 - 4.5}{0.4} = 0.67 \text{or} P(L < Q_1) = 0.25 \text{gives} \frac{Q_1 - 4.5}{0.4} = -0.67 \text{MI BI} \\ \hline (Q_3 =] 4.768 \text{awrt} 4.77 \text{or} Q_4 = 4.232 \text{awrt} 4.23 \text{A1} \\ \hline (ii) [Q_1 =]^4.232^* \text{awrt} 4.23 \text{or} [Q_3 =]^4.768^* \text{awrt} 4.77 \text{B1 ft} (4.68) \\ \hline (c) 1.5(^{\circ}Q_3^{\circ} ^{\circ} ^{\circ}Q_1^{\circ}) = 0.8041 (0.81) \text{MI} \\ \hline \text{Lower limit} = 3.428 (3.42 - 3.43) \text{Upper limit} = 5.572 (5.57 - 5.58) \text{A1 AI} \\ \hline (3.42) (2.4 < ^{\circ}5.58) = P\left(\frac{3.42 - 4.5}{0.4} < Z < \frac{^{\circ}5.58 - 4.5}{0.4} \right) \text{MI AII} \\ \hline \text{(Calculator gives 0.99306)} \\ \hline (Calculator gives 0.99306) & [P(5 < L < ^{\circ}5.58) = P\left(\frac{5 - 4.5}{0.4} < Z < \frac{^{\circ}5.58 - 4.5}{0.4} \right) = 0.1021 \text{MI AI} \\ \hline \text{(Calculator gives 0.10218)} & \text{awrt} 0.102 \\ \hline P(L > 5] ^{\circ}3.42 ^{\circ} < L < ^{\circ}5.58 ^{\circ}) = P\left(\frac{5 - 4.5}{0.4} < Z < \frac{^{\circ}5.58 - 4.5}{0.4} \right) = 0.1021 \text{awrt} 0.103 \text{A1} (4.68) \\ \hline \text{(a)} \text{MI} \text{for standardising with 3.86}, 4.5 \text{ and } 0.4 \\ \hline \text{MI} \text{for standardising with 3.86}, 4.5 \text{ and } 0.4 \\ \hline \text{MI} \text{for t} 1 - p \text{ where } 0.5 < p < 1 \\ \hline \text{A1} \text{for awrn} 0.0548 \text{(NB awrt) 0.0548 scores 3.3)} \\ \hline \text{(b)}(i) \text{MI} \text{for standardising with } Q_3 \text{ or } Q_3 \text{ (o.e.)}, 4.5 \text{ and } 0.4 \text{ and setting equal to a z value, } 0.65 < z < 0.7 \\ \hline \text{A1} \text{awrt} 4.77 \text{ or awrt} 4.23 \text{for } Q_3 \text{ correctly labelled} \text{NB it is possible to score MIBOA1} \\ \hline \text{(b)}(ii) \text{B1R} \text{for use of } 0.67, z , 0.675 \text{This may be implied by a final answer of } 4.769 \text{ or } 4.2302 \\ \hline \text{A1} \text{awrt} 4.72 \text{ if } Q_3 \text{ given in (i) or awrt} 4.77 \text{ if } Q_3 \text{ given in (i)} \text{if their part (b)}(i) \\ \hline \text{You will need to check whether } Q_3 = 9 \\ \hline \text{(c)} \text{MI} \text{use of } 1.5(Q_3 - Q_3) \text{ if their } Q_3 \text{ and } Q_3 \text{ If these are not correct then working must be shown} \\ \hline \text{A1} \text{for lower limit awrt} 3.42 \text{ to } 3$	5 (a)	P(L < 3.	$86) = P\left(Z < \pm \frac{3.86 - 4.5}{0.4}\right)$	M1	
[Q ₁ =] 4.768 awrt 4.77 or Q ₁ = 4.232 awrt 4.23 A1 [Q ₁ =] '4.232' awrt 4.23 or [Q ₃ =] '4.768' awrt 4.77 B1 ft (4) [Q ₁ =] '4.232' awrt 4.23 or [Q ₃ =] '4.768' awrt 4.77 B1 ft (4) [Color Initit = 3.428 (3.42 - 3.43) Upper limit = 5.572 (5.57 - 5.58) A1		`	,	M1 A1 (3)	
[Q ₁ =] 4.768 awrt 4.77 or Q ₁ = 4.232 awrt 4.23 A1 [Q ₁ =] '4.232' awrt 4.23 or [Q ₃ =] '4.768' awrt 4.77 B1 ft (4) [Q ₁ =] '4.232' awrt 4.23 or [Q ₃ =] '4.768' awrt 4.77 B1 ft (4) [Color Initit = 3.428 (3.42 - 3.43) Upper limit = 5.572 (5.57 - 5.58) A1	(b)(i)	P(L < Q)	$Q_3 = 0.75 \text{ gives } \frac{Q_3 - 4.5}{0.4} = 0.67 \text{ or } P(L < Q_1) = 0.25 \text{ gives } \frac{Q_1 - 4.5}{0.4} = -0.67$	M1 B1	
(c) $I.5(Q_3 - Q_1) = 0.804]$ (0.81) M1 Lower limit = 3.428 (3.42 - 3.43) Upper limit = 5.572 (5.57 - 5.58) A1 A1 (3.42) A1 (4.4) $I.5 = I.5 =$		$[Q_3 =]4.$	768 awrt 4.77 or $Q_1 = 4.232$ awrt 4.23	A1	
Lower limit = 3.428 (3.42 – 3.43) Upper limit = 5.572 (5.57 – 5.58) A1 A1 (3) $P(3.42' < L < '5.58') = P\left(\frac{3.42' - 4.5}{0.4} < Z < \frac{'5.58' - 4.5}{0.4}\right) $ $= \left[P(-2.7 < Z < 2.7)\right] = 0.9930*$ (Calculator gives 0.99306) (P(5 < L < '5.58') = $P\left(\frac{5-4.5}{0.4} < Z < \frac{'5.58' - 4.5}{0.4}\right) = 0.1021$ (Calculator gives 0.10218) $P(L > 5 '3.42' < L < '5.58') = \frac{P(5 < L < '5.58' - 4.5)}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58')}{P('3.4$	(ii)	$[Q_1 =]'4$.232' awrt 4.23 or $[Q_3 =]'4.768'$ awrt 4.77	B1 ft (4)	
Lower limit = 3.428 (3.42 - 3.43) Upper limit = 5.572 (3.57 - 3.58) (3.63 - 3.58) (3.64 - 3.42) (4.	(c)	1.5('Q ₃ '	$-'Q_1')[=0.804]$ (0.81)	M1	
(d) $ = \left[P(-2.7 < Z < 2.7) \right] = 0.9930* $ (Calculator gives 0.99306) $ P(5 < L < '5.58') = P\left(\frac{5-4.5}{0.4} < Z < \frac{'5.58'-4.5}{0.4} \right) = 0.1021 $ (Calculator gives 0.10218) awrt 0.102 $ P(L > 5 '3.42' < L < '5.58') = \frac{P(5 < L < '5.58)}{P('3.42' < L < '5.58)} = \frac{(0.102')}{P('3.42' < L < '5.58)} $ $ = 0.1027 $ awrt 0.103 Al (4) $ \frac{\text{M1}}{\text{M1}} $		Lower li	mit = 3.428 (3.42 – 3.43) Upper $limit = 5.572$ (5.57 – 5.58)	A1 A1 (3)	
(Calculator gives 0.99306) (Ee) $P(5 < L < '5.58') = P\left(\frac{5-4.5}{0.4} < Z < '\frac{5.58'-4.5}{0.4}\right) = 0.1021$ $P(L > 5 '3.42' < L < '5.58') = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58)}{P('3.42' < L < '5.58')} = \frac{P(5 < L < '5.58)}{P('3.42' < L < '5.58')} = \frac{P(0.102')}{0.993}$ $= 0.1027 \qquad \text{awrt 0.103} \qquad \text{Al} \qquad (4 \text{ MI} \qquad \text{for standardising with 3.86, 4.5 and 0.4}$ $\text{MI} \qquad \text{for standardising with 3.86, 4.5 and 0.4}$ $\text{MI} \qquad \text{for standardising with } Q_3 \text{ or } Q_3 \text{ (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65 < z < 0.7 \text{ or awrt 0.0548}}$ $\text{(b)(i)} \qquad \text{MI} \qquad \text{for use of 0.67}, z , 0.675 \qquad \text{This may be implied by a final answer of 4.769 or 4.2302}$ $\text{Al} \qquad \text{awrt 4.77 or awrt 4.23 for } Q_3 \text{ correctly labelled} \qquad \text{NB} \text{ it is possible to score M1B0A1}$ $\text{(b)(ii)} \qquad \text{Bift} \qquad \text{awrt 4.23 if } Q_3 \text{ given in (i) or awrt 4.77 if } Q_3 \text{ given in (i)} \qquad \text{for their part (b)(i)}}$ $\text{You will need to check whether } Q_1 + Q_3 = 9$ $\text{(c)} \qquad \text{MI} \qquad \text{use of } 1.5(Q_3 - Q_4) \text{ ft their } Q_3 \text{ and } Q_4 \text{ ft these are not correct then working must be shown}$ $\text{Al} \qquad \text{for lower limit awrt 3.42 to 3.43}$ $\text{Al} \qquad \text{for wore/upper limits are incorrect then the standardisation must be shown}$ $\text{for a correct standardisation for their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown}$ $\text{for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown}$ $\text{for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown}$ $for a correct probability statement in either form or a correct ratio ft their lower and upper limits are incorrect tratio ft their lower and upper limits and their 0.0035 -0.0035 oe or 1 -0.0035 -0.0035 oe or 1 -0.0035 -0.003$		P('3.42	$' < L < '5.58') = P\left(\frac{'3.42' - 4.5}{0.4} < Z < \frac{'5.58' - 4.5}{0.4}\right)$	M1 A1ft	
(e) $ P(5 < L < '5.58') = P\left(\frac{5-4.5}{0.4} < Z < \frac{'5.58'-4.5}{0.4}\right) = 0.1021 $	(d)	(Calculat	2 4	A1* (3)	
$P(L>5 \mid 3.42 \mid < L < \mid 5.58 \mid) = \frac{P(5 < L < \mid 5.58 \mid)}{P("3.42 \mid < L < \mid 5.58 \mid)} \left[= \frac{0.102}{0.993} \right] $ M1 $= 0.1027 \text{awrt } 0.103 \text{A1} (4)$	(e)			M1 A1	
a Notes Total 17					
Notes Total 17		P(L>5)	$ '3.42' < L < '5.58' = \frac{P(5 < L < '5.58')}{P('3.42' < L < '5.58')} = \frac{'0.102'}{0.993}$	M1	
(a) M1 for standardising with 3.86, 4.5 and 0.4 M1 for 1 - p where 0.5 < p < 1 A1 for awrt 0.0548 (NB awrt 0.0548 scores 3/3) (b)(i) M1 for standardising with Q3 or Q1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65 < z < 0.7 B1 for use of 0.67, z , 0.675 This may be implied by a final answer of 4.769 or 4.2302 A1 awrt 4.77 or awrt 4.23 for Q1 correctly labelled NB it is possible to score M1B0A1 awrt 4.23 if Q3 given in (i) or awrt 4.77 if Q1 given in (i) ft their part (b)(i) You will need to check whether Q1 + Q3 = 9 (c) M1 use of 1.5(Q3 - Q1) ft their Q3 and Q1 If these are not correct then working must be shown for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 3.42 to 3.43 A1 for upper limit awrt 3.42 to 3.43 A1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. (0.9965 - 0.5)×2 Do not allow use of negative limits A1* A1* A1* A1* A1* A1* A1* A1				` ′	
M1 for $1-p$ where $0.5 for awrt 0.0548 (NB awrt 0.0548 scores 3/3) (b)(i) M1 for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65 < z < 0.7 B1 for use of 0.67, z , 0.675 This may be implied by a final answer of 4.769 or 4.2302 A1 awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1 awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i) You will need to check whether Q_1 + Q_3 = 9 use of 1.5(Q_1 - Q_1) ft their Q_3 and Q_1 If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 for upper limit awrt 5.57 to 5.58 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. (0.9965 - 0.5) \times 2 Do not allow use of negative limits answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe of 1.0035 - 0.0035 oe of for writing or using 1.000000000000000000000000000000000000$	(a)	N/1		Total 17	
A1 for awrt 0.0548 (NB awrt 0.0548 scores 3/3) (b)(i) M1 for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, 0.65 $< z < 0.7$ B1 for use of 0.67, $ z $, 0.675 This may be implied by a final answer of 4.769 or 4.2302 A1 awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1 (b)(ii) B1ft awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i) You will need to check whether $Q_1 + Q_3 = 9$ (c) M1 use of $1.5(Q_3 - Q_1)$ if their Q_3 and Q_1 If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown A1ft A1ft The correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe (e) M1 for writing or using $P(5 < L < 5.58')$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits A1low $P(5 < L < 5.58')$	(a)				
(b)(i) M1 for standardising with Q_3 or Q_1 (o.e.), 4.5 and 0.4 and setting equal to a z value, $0.65 < z < 0.7$ B1 for use of 0.67 , $ z $, 0.675 This may be implied by a final answer of 4.769 or 4.2302 A1 awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1 (b)(ii) B1ft awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i) You will need to check whether $Q_1 + Q_3 = 9$ (c) M1 use of $1.5(Q_3 - Q_1)$ ft their Q_3 and Q_1 If these are not correct then working must be shown for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965 - 0.5) \times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or $0.9965 - 0.0035$ oe or $1 - 0.0035 - 0.0035$ oe (e) M1 for writing or using $P(5 < L < 5.58)$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $\frac{P(5 < L < 5.58)}{5.58}$					
awrt 4.77 or awrt 4.23 for Q_1 correctly labelled NB it is possible to score M1B0A1 awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i) You will need to check whether $Q_1 + Q_3 = 9$ (c) M1 use of $1.5(Q_3 - Q_1)$ ft their Q_3 and Q_1 If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965-0.5) \times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe (e) M1 for writing or using $P(5 < L < 5.58)$ Maybe implied by awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $\frac{P(5 < L < 5.58)}{20.00000000000000000000000000000000000$	(b)(i)	M1	i i i i i i i i i i i i i i i i i i i	5 < z < 0.7	
(b)(ii) B1ft awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i) You will need to check whether $Q_1 + Q_3 = 9$ (c) M1 use of $1.5(Q_3 - Q_1)$ ft their Q_3 and Q_1 If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965-0.5) \times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or $0.9965-0.0035$ oe or $1-0.0035-0.0035$ oe (e) M1 for writing or using $P(5 < L < 5.58)$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $P(5 < L < 5.58)$		B1	for use of 0.67, $ z $, 0.675 This may be implied by a final answer of 4.769 or 4.2	2302	
You will need to check whether $Q_1 + Q_3 = 9$ (c) M1 use of $1.5(Q_3 - Q_1)$ ft their Q_3 and Q_1 If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965 - 0.5) \times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or $0.9965 - 0.0035$ oe or $1 - 0.0035 - 0.0035$ oe (e) M1 for writing or using $P(5 < L < 5.58)$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $P(5 < L < 5.8)$					
(c) M1 use of 1.5(Q ₃ - Q ₁) ft their Q ₃ and Q ₁ If these are not correct then working must be shown A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. (0.9965 - 0.5)×2 Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe (e) M1 for writing or using P(5 < L < '5.58') Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow P(5 < L < '5.58')	(b)(ii)	B1ft	awrt 4.23 if Q_3 given in (i) or awrt 4.77 if Q_1 given in (i) ft their part (b)(i)		
A1 for lower limit awrt 3.42 to 3.43 A1 for upper limit awrt 5.57 to 5.58 (d) M1 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. (0.9965 - 0.5)×2 Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe (e) M1 for writing or using P(5 < L < '5.58') Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow P(5 < L < '5.58')	(c)	M1	- 2		
(d) M1 for upper limit awrt 5.57 to 5.58 for a correct standardisation for either their 3.42 or their 5.58 May be implied by awrt -2.7 or awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. (0.9965 - 0.5)×2 Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or 0.9965 - 0.0035 oe or 1 - 0.0035 - 0.0035 oe (e) M1 for writing or using P(5 < L < '5.58') Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow P(5 < L < '5.58')	. ,	A1			
awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt -2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965-0.5)\times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or $0.9965-0.0035$ oe or $1-0.0035-0.0035$ oe (e) M1 for writing or using $P(5 < L < '5.58')$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $P(5 < L < '5.58')$					
A1ft 2.7 If lower/upper limits are incorrect then the standardisation must be shown or clear use of symmetry e.g. $(0.9965-0.5)\times 2$ Do not allow use of negative limits A1* answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or better or $0.9965-0.0035$ oe or $1-0.0035-0.0035$ oe (e) M1 for writing or using $P(5 < L < '5.58')$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $P(5 < L < '5.58')$	(d)	M1	The state of the s	t –2.7 or	
better or $0.9965 - 0.0035$ oe or $1 - 0.0035 - 0.0035$ oe (e) M1 for writing or using $P(5 < L < '5.58')$ Maybe implied by awrt 0.102 A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $P(5 < L < '5.58')$		A1ft	for a correct standardisation for their 3.42 and their 5.58 May be implied by awrt –2.7 and awrt 2.7 If lower/upper limits are incorrect then the standardisation must be shown		
A1 awrt 0.102 for a correct probability statement in either form or a correct ratio ft their lower and upper limits M1 $\frac{P(5 < L < '5.58')}{Allow}$		A1*	answer is given so there must be a fully correct solution given with no errors Allow 0.9930 or		
for a correct probability statement in either form or a correct ratio ft their lower and upper limits Allow $\frac{P(5 < L < '5.58')}{}$	(e)	M1	for writing or using $P(5 < L < 5.58)$ Maybe implied by awrt 0.102		
M1 Allow $P(5 < L < 5.58)$		A1			
		M1	for a correct probability statement in either form or a correct ratio ft their lower and under Allow $\frac{P(5 < L < '5.58')}{0.993}$	ipper limits	
A1 awrt 0.103		A1			

Question		Scheme	Marks	
6 (a)	An increa	ase/change of 1°C will allow an extra 2.72 grams [of sugar] to dissolve	B1	
			(1)	
(b)	151.2 + 2	$2.72 \times 90 = 396$	M1 A1	
(0)	The terms	paratura/00[°C] is outside of the range : so (may be) unreliable	(2) B1; dB1	
(c)	The temp	perature/90[°C] is outside of the range; so (may be) unreliable	(2)	
		(3119	(2)	
(d)	Use of $\overline{y} = 151.2 + 2.72\overline{x}$ So $\sum x = \left(\frac{3119}{12} - 151.2\right) \times 12 = 479.63235$			
	$S_{yy} = 851$	$1093 - \frac{3119^2}{12} \left[= 40412.9166 \right]$	M1	
	$S_{xx}=245$	$500 - \frac{479.63235^{2}}{12} [= 5329.4005]$	M1	
	$S_{xy} = 2.7$	2×'5329.4005'[=14495.9693]	M1	
	$r = \frac{1}{\sqrt{53}}$	$\frac{'14495.9693'}{29.4005'\times'40412.9166'}$ or $r = 2.72 \times \sqrt{\frac{'5329.4005'}{'40412.9166'}}$	M1	
	= 0.98	8*	A1*	
			(7)	
(e)		oints lie reasonably close to a straight line/positive correlation and the PMCC o 1 therefore supports a linear model	B1 B1	
			(2)	
		Notes	Total 14	
(a)	B1	for a correct interpretation of the gradient in context including grams and degrees		
(b)	M1	for substitution of 90 into the regression line		
	Al	A1 cao 396 on its own scores 2 out 2		
(c)	B1	for a comment that implies the temperature/90[°C] is outside of the range. Allow extrapolation if not linked to 396. (Do not allow comments that imply that 396 is out of range or the use of "it")		
	dB1			
(d)	M1	for clear use of the regression line to find $\sum x$ or \overline{x} (may be implied by 3 rd M1)		
	A1	$\sum x = \text{awrt } 480 \text{ or } \overline{x} = \text{awrt } 40 \text{ (may be implied by } 3^{\text{rd}} \text{ M1)}$		
	M1	for a correct expression for S_{yy} May be implied by awrt 40400		
	M1	for a correct expression for S_{xx} ft their $\sum x$ or \overline{x} May be implied by awrt 5330		
		for use of the gradient to find S_{xy} ft their S_{xx} May be implied by awrt 14500 or use	of	
	M1 $r = b \sqrt{\frac{S_{xx}}{S_{yy}}}$			
	for a correct expression for r ft their S_{xy} , S_{xx} and S_{yy} or 2.72, S_{xx} and S_{yy} if these are not correct then they must be labelled before an expression for r is given for this mark to be awarded			
	A1* Answer is given so a fully correct solution must be seen			
(e)	B1	for either the points lie reasonably close to a straight line/points or data are linear/pos	sitive	
. ,	B1	correlation or the PMCC is close to 1 (Ignore any reference to strength) for both the points lie reasonably close to a straight line/points or data are linear/posi correlation and the PMCC is close to 1 (Ignore any reference to strength) with a correction		