

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Pure Mathematics P3 (WMA13) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 72870 Publications Code WMA13_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

`A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

- Factorisation
 - $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

- Formula
 - Attempt to use the correct formula (with values for *a*, *b*and *c*).
- Completing the square

• Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

- Differentiation
 - Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)
- Integration
 - Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
- Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Marks	
1. (a)	g(3) = -265, g(4) = 3104	M1	
	States change of sign, continuous and hence root in [3,4]	A1	
		(2)	
(b)	$x_2 = \sqrt[6]{1000 - 2 \times 3} = 3.1591$	M1 A1	
	$(\alpha =)3.1589$	A1	
		(3)	
		(5 marks)	
Notes (a)			
A1 B	M1 Attempts the value of g at 3 and 4 with one correct (accept any value for the other as an attempt). Note narrower ranges are possible but must contain the root and lies in [3,4].		
(b)			
M1 A	ttempts to substitute $x_1 = 3$ into the formula. Implied by sight of expression, aw	rt 3.159	
A1 a	vrt 3.1591		
A1 ($(\alpha =)$ 3.1589 cao - must be to 4 d.p. Do not be concerned about the labelling of the root (x or α		
	etc), mark the final answer of (b)(ii). (Note sight of this value implies the M1 even if x_2 is not seen).		

Question Number	Scheme	Marks	
2 (a) (i)	$\log_6 T = 4 - 2\log_6 x$	B1	
(ii)	E.g. $\log_6 T = 4 - 2\log_6 216 \Longrightarrow \log_6 T = 4 - 2 \times 3 = -2 \Longrightarrow T = \dots$	M1	
	$\Rightarrow T = 6^{-2} = \frac{1}{36}$	A1	
		(3)	
(b)	$\log_6 T = 4 - 2\log_6 x \Longrightarrow T = 6^{4 - 2\log_6 x}$	M1	
	$\Rightarrow T = 6^4 \times 6^{\log_6 x^{-2}}$	dM1	
	$\Rightarrow T = \frac{1296}{2}$	A1	
	x	(3)	
		(6 marks)	
Notes Mark the o	uestion as a whole. Do not be concerned about part labelling.		
(a)(i)	uestion us a whole. Do not be concerned about part habening.		
	rect linear equation $\log_6 T = 4 - 2\log_6 x$ (oe) The 4 may be written as $\log_6 1296$		
(ii)			
	stitutes $x = 216$ into an equation linking T and x arising from a linear equation is		
conc	logarithms and proceeds to make T the subject. They may have answered (b) first. Do not be concerned about the process for this mark. May be implied by awrt 0.028 following a correct equation.		
A1 Corr	Correct value $T = \frac{1}{36}$. Do not accept 6^{-2} .		
stag	Makes a first step towards achieving an answer. Use of a correct log rule or law applied at some stage in their attempt to eliminate logs from the equation. As a rule of thumb this can be awarded for e.g.		
• 8	application of a power rule $-"2"\log_6 x = -\log_6 x^{"2"}$ or $"4" = \log_6 6^{"4"}$ or $4 \to 6^4$ ((note that e.g.	
	$\log_6 T = -2\log_6 x + 4 \rightarrow x^{-2} + 6^4 \text{ implies this mark})$		
• ;	an attempt to make T the subject. E.g. $\log_6 T = "4" - "2" \log_6 x \Longrightarrow T = 6^{"4" - "2" \log_6 x}$		
dM1 Full	Full and complete method in proceeding from an equation of form $\log_6 T = a + b \log_6 x (a, b \neq 0)$		
	equation of form $T = k \times x^{\pm n}$ or equivalent. All log work must be correct but a ficients.	allow slips on	
A1 Ach	ieves $T = \frac{1296}{x^2}$ or equivalent such as $Tx^2 = 1296$ and isw after a correct answer.	Allow 6^4 for	
1290	5.		
	Note: Allow the M marks if a different letter than <i>T</i> is used, e.g. <i>y</i> . But must be correct in terms of <i>T</i> and <i>x</i> for the A mark.		

Question
NumberSchemeMarks3 (i)
(ii) (a)
$$\frac{d}{dx} \ln(\sin^2 3x) = \frac{1}{\sin/3x} \times 2\sin^2 5x \times 3\cos 3x = 6\cot 3x$$
M1 A1(ii) (a)
 $\frac{d}{dx} (3x^2 - 4)^6 = 36x (3x^2 - 4)^5$ (2)(b) $\int x(3x^2 - 4)^5 dx = \frac{1}{36} (3x^2 - 4)^6 = \frac{1}{36} (2)^6 - \frac{1}{36} (-4)^6 = -112$ M1 A1 cso(b) $\int \sqrt{x} (3x^2 - 4)^5 dx = \left[\frac{1}{36} (3x^2 - 4)^6\right]_0^{\frac{1}{20}} = \frac{1}{36} (2)^6 - \frac{1}{36} (-4)^6 = -112$ M1 A1 cso(c) $\int \sqrt{x} (3x^2 - 4)^5 dx = \left[\frac{1}{36} (3x^2 - 4)^6\right]_0^{\frac{1}{20}} = \frac{1}{36} (2)^6 - \frac{1}{36} (-4)^6 = -112$ M1 A1 cso(c)M1 A1 cso(3)(7 marks)Notes(7)(3)(i)Attempts to differentiate a ln function. Award for $\frac{d}{dx} \ln(\sin^2 3x) = \frac{1}{\sin^3 3x} \times ...$ where ... could be 1An alternative could be $\frac{d}{dx} \ln(\sin^2 3x) = \frac{d}{dx} 2\ln(\sin 3x) - (2x) \frac{1}{\sin^3 3x} \times ...$ or $\frac{d}{dx} \ln \left(\frac{1-\cos 6x}{2}\right) = \frac{2}{1-\cos 6x} \times ...$ A1 $6\cot 3x$ o.e. such as $\frac{6\cos 3x}{\cos 3x}$ or $\frac{6}{\tan 3x}$ or $6\tan 3x^{-1}$ but not $6\tan^{-1} 3x$. Accept also $\frac{6\sin 6x}{1-\cos 6x}$ or $\frac{3\sin 6x}{\sin^3 3x}$ and isw after a suitably simplified answer.Constant terms mus be gathered and no uncancelled common factors in numerator and denominator.(ii) (a)M1Achieves $\frac{d}{dx} (3x^2 - 4)^6 = Ax (3x^2 - 4)^5$ where A is a constant which may be 1.A1 $\frac{d}{dx} (3x^2 - 4)^6 = 4x (3x^2 - 4)^5$ or. Need not be simplified. Isw after a correct answer.(ii) (b)B1ft $x (3x^2 - 4)^6 = 4x (3x^2 - 4)^5$ or $\frac{1}{A} (3x^2 - 4)^6$ following through on their (a) provided it is of
the form $\frac{d}{dx} (3x^2 - 4)^6 = 4x (3x^2 - 4)^5$ This may arise from attempts via substitution and can be sc

A1cso (R =) -112 and isw if they make the answer positive after a correct answer seen. Note: Answer only with no working at all shown scores no marks. Correct integral must be seen. Note: Attempts at integration by parts are unlikely to succeed, but if done correctly and achieve the correct form of the answer may score the relevant marks.

Note (ii) may be completed by expansion.

- (a)
- M1 Requires expansion to form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2 + g$ followed by an attempt to integrate each term (power decreased by 1)

A1 Requires correct derivative. $8748x^{11} - 58320x^9 + 155520x^7 - 207360x^5 + 138240x^3 - 36864x$

(b)

B1ft Correct answer from a restart, which may be via expansion

$$\frac{81x^{12}}{4} - 162x^{10} + 540x^8 - 960x^6 + 960x^4 - 512x^2$$

M1 Substitutes both limits and subtracts into an expression of the form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2$

A1cso As main scheme.

Question Number	Scheme	Marks	
4. (a)	$f \ge -5$	B1 (1)	
(b)	$y = f(x)$ $y = f^{-1}(x)$ $y = f^{-1}(x)$ Curve starting on negative <i>x</i> -axis and passing through positive <i>y</i> -axis, in quadrants 1 and 2 only. Shape and position correct.	(1) M1 A1	
(c)	$2x^2 - 5 = x$ or $2x^2 - 5 = \sqrt{\frac{x+5}{2}}$ or $x = \sqrt{\frac{x+5}{2}}$ or $2(2x^2 - 5)^2 - 5 = x$	(2) B1	
	Full attempt to solve $2x^2 - x - 5 = 0 \Longrightarrow x =$ exact	M1	
	$x = \frac{1 + \sqrt{41}}{4}$	A1	
		(3) 6 marks	
Notes		0 marks	
	f the question as a whole - if (c) answered as (b) allow the marks.		
B1 Corr	rect range. Accept $y \ge -5$, $f(x) \ge -5$, $f \in \left[-5, \infty\right)$ or correct formal set notation	n but not just	
(b) Not M1 For and A1 Corr	 x≥-5. (b) Note: if a sketch is redrawn score for the sketch of the inverse only. M1 For a curve starting on the negative <i>x</i>- axis and passing through the positive <i>y</i> - axis, in quadrants 1 and 2 only. A1 Correct shape (curvature) and position. Must be increasing (not bending back on itself) with decreasing gradient, though be tolerant with pen slips at the end. Do not penalise incorrect 		
(c) B1 Sets equa	up a correct equation for the solution, as shown in scheme or equivalents. Shoul ation but allow "=0" implied if there is an attempt to solve. Just $2x^2 - x - 5$ is B0 her working.		
	attempt to solve a correct equation leading to exact answers. Attempts via $f(x) =$	$f^{-1}(x)$ (oe)	
will	lead a quartic $(8x^4 - 40x^2 - x + 45 = 0 \text{ if correct})$ but will likely not lead to exact	t answers.	
Dec	e exact answers following a quadratic is fine, but method should be shown for a dimal answer only is M0.	quartic.	
A1 <i>x</i> =	$\frac{1+\sqrt{41}}{4}$ ONLY.		

Some examples of curves for question 4(b).

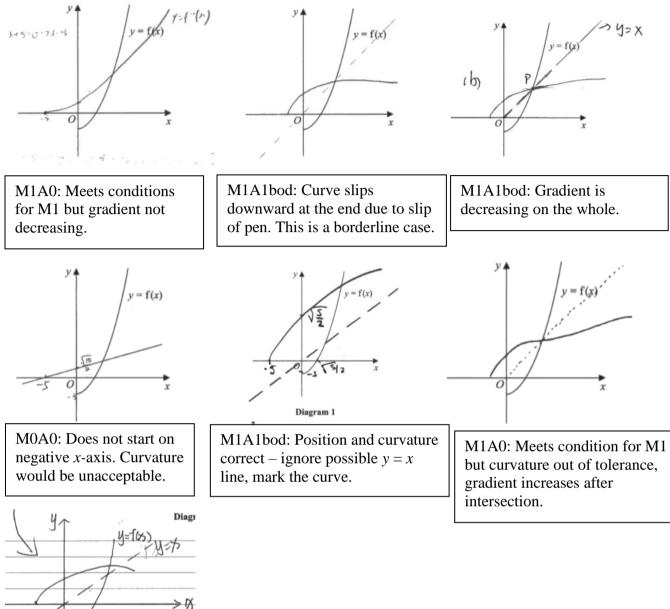


diagram 1

M1A0: Curve is clearly going downward on the right-hand side.

Question Number	Scheme	Marks		
5 (i)	States $x = 2$	B1		
	$\sqrt{3} \sec x + 2 = 0 \Longrightarrow \cos x = -\frac{\sqrt{3}}{2} \Longrightarrow x = \dots$	M1		
	$x = \frac{5\pi}{6}$	A1		
(ii)	Attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$	(3) M1		
	$6\sin^2\theta + 10\sin\theta - 3 = 0$	A1		
	$\sin \theta = \frac{-5 \pm \sqrt{43}}{6} (= -1.926, 0.2595) \Rightarrow \theta = \arcsin()$	M1		
	$\theta = 15.0^{\circ}, 165^{\circ}$	A1		
		(4) (7 marks)		
Notes				
	tes $x = 2$. May be seen anywhere in (i) and don't be concerned where it concerned where			
M1 For	a correct process to solve $\sqrt{3} \sec x + 2 = 0$ E.g. $\sec x = \frac{1}{\cos x} \Longrightarrow \cos x = -\frac{\sqrt{2}}{2}$	$\frac{x^3}{2} \Rightarrow x = \dots$ Allow		
slip	s in rearranging but must attempt to solve $\cos x = k$, $ k < 1$ or $\sec x = k$, $ k $	>1 Degree value (
	$^{\circ}$) following a correct equation implies the M mark. Note some may use so n a quadratic in tan x. These will need a correct identity, correct method to			
	ich may be by calculator) and attempt to solve $\tan x = k, k \neq 0$	sorve a quadratie		
A1 <i>x</i> =	$\frac{5\pi}{6}$ and no other extra solutions in the range. Accept awrt 2.62 (and isw).			
Note that ~	$\sqrt{3} \sec x + 2 = 0 \rightarrow x = \frac{5\pi}{6}$ can score M1A1 as no incorrect work is seen, method	implied.		
Question re	equired working to be shown $x = \frac{5\pi}{6}$ without seeing at least $\sqrt{3} \sec x + 2 = 6$) extracted first is		
M0.	A0.			
(ii)				
	empts to use $\cos 2\theta = \pm 1 \pm 2\sin^2 \theta$ to form a quadratic equation in $\sin \theta$. If use for the identity, must also use $\cos^2 \theta = 1 - \sin^2 \theta$ before gaining this mark	U		
A1 Cor	rect 3 term quadratic equation $6\sin^2\theta + 10\sin\theta - 3 = 0$ or a multiple of this.	Alternatively may		
be s	cored for $6\sin^2\theta + 10\sin\theta = 3$ if followed by completing the square on LH.	S to solve.		
•	all attempt to find one value for θ from a quadratic in sin θ . Must involved correct method to solve the quadratic in sin θ (usual rules, may use calculator) to produce a			
•	 value for sinθ use of arcsin() to reach the value for θ (you may need to check the values if arcsin() is not shown). Radian answers can imply the mark (awrt 0.263, 2.88 if correct). May be scored from an incorrect identity as long as a quadratic is achieved. Accept arcsin 			
exp	ression for the M			
	θ =awrt 15.0°, 165° and no other solutions in the range. Accept just 15° for 15.0° (but not awrt 15° if it does not round to 15.0°)			
	Condone a different variable used than θ throughout.			

Question Number	Scheme	Marks	
6.(a)	(2, -10)	B1 B1	
			(2)
(b)	$ff(0) = f(-4) = \dots$	M1	
	= 8	Alcso	(2)
(c)	Attempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x =$	M1	(_)
	$x > -\frac{7}{4}$ only	A1	
	$x > -\frac{1}{4}$ only		(2)
	$x(\text{or } x) = \frac{16}{3}$	B1	(2)
(d)	5	DI	
	Attempts $3(x -2)-10=0 \Rightarrow x =k, k > 0$		
	or $3(-x-2)-10 = 0 \Longrightarrow x = -k$	M1	
	or $3(x-2)-10 = 0 \Rightarrow x = k \Rightarrow x = -k$		
	$x = \left(\frac{16}{3} \text{ and}\right) - \frac{16}{3}$ with no other values	A1	
			(3)
		(9 ma	rks)
Notes(a)			
	r one correct coordinate r $(2, -10)$. Allow $x =, y =$ Do not accept e.g. 6/3 unless 2 has been seen/iden	tified wit	h
thi			
(b) M1 Fo	r a full attempt at $f f(0)$. Can be seered for $f(-4)$. Allow for use of their $f(0)$ even	ifinoorro	at
as	For a full attempt at f f (0). Can be scored for f (-4). Allow for use of their f(0) even if incorrect as long as the process is clear, e.g. $f(0) =$ stated or calculated first then used. May be scored by first attempting ff(x) before substituting. This mark is for showing the correct process of		
CO	nposites, so may be scored if there are slips or errors with modulus if the intent is c		
Alcso ff (c)	(0) = 8 only. A0 if other values given.		
	tempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x = \dots$ Allow with equality or any inequality	uality for	the
М	mark. ernatively, rearranges to $ x-2 = ax+b$, squares both sides and solves the quadrated of the statement of the statemen		
A1 x2	$-\frac{7}{4}$ (oe) only. If another inequality or value is given and not rejected withhold th	is mark.	
(d)	(d) Work for (d) must be seen or referred to in (d). Do not accept for work attempted in earlier parts but not		
	For $x = \frac{16}{3}$. Allow when seen even from incorrect working as it could be verified. May be seen on		
ske	etch as long as referred to in (d). Allow also for $ x = \frac{16}{3}$		

M1 Correct method to find the root on the negative x-axis. E.g. attempts to solve 3(|x|-2)-10=0 to achieve a value for |x|, or 3(-x-2)-10=0 to achieve a value for x, or for reflecting in the y-axis (making negative) their 16/3 from an attempt at 3(x-2)-10=0. May be part of longer winded attempts. Allow missing brackets for the M.
Note it is possible to arrive at an equation leading to x = ±16/3 from incorrect starting points, and such methods will score M0.
A1 For x = -16/3 with no other values (aside their x = 16/3). Must give the negative value, not just |x|=16/3. May be stated on a sketch as long as work seen in (d). Do not isw if they clearly reject this value later or if they try to form an inequality from the values, which is A0 as other values are included.

Questio Numbe		Marks	
7. (a)	States or implies that $A = 2500$	B1	
	$10000 = 2500e^{k \times 8} \Longrightarrow 8k = \ln 4 \Longrightarrow k = \dots$	M1	
	$\Rightarrow k = \frac{1}{8} \ln 4 \text{ or awrt } 0.1733$	A1	
	8		(3)
(b)	$\frac{dN}{dt} = 60000 \times -0.6e^{-0.6 \times 5} = -1792$ So decrease is 1790	M1, A1	
(c)	$60000e^{-0.6t} = 2500e^{0.1733t}$	M1	(2)
	$24 = e^{0.1733t + 0.6t} \Longrightarrow 0.1733t + 0.6t = \ln 24 \Longrightarrow t = \dots$	dM1	
	T = 4.11	A1	
		8 marks	(3)
Notes		0 1101 115	
(a)	kt kt		
	tates or implies that $A = 2500$. E.g award for $N = 2500e^{kt}$ tempts to use $N = Ae^{kt}$ with $t = 8, N = 10000$ and their A to set up and solve an equ		
C A c r	orrect ln work must be used to solve their equation. llow this mark for attempts to find k first by solving simultaneously if they use $t = 1$ if the study: $2500 = Ae^k$, $10000 = Ae^{8k} \Rightarrow e^{7k} = 4 \Rightarrow 7k = \ln 4 \Rightarrow k =$ but the index a sust be correct.	for the st	art
A1 /	= awrt 0.1733. Accept the exact value $\frac{1}{8} \ln 4$ and isw after seen.		
(b) M1	$\frac{N}{dt} = Ce^{-0.6\times5} = \dots \text{ where } C \text{ is a constant. Condone } 60000e^{-0.6t} \rightarrow 60000e^{-0.6t} \text{ as long}$	as it is cle	ar
ť	ey think they have found $\frac{dN}{dt}$. Must be correct index (not <i>kt</i>).		
A1 A	wrt 1790 from a correct derivative. Condone awrt -1790		
(c)			
M1 S	ets $60000e^{-0.6t}$ = their 2500e ^{"0.1733"t} May use <i>T</i> or another variable instead. Allow a since the test of test	lip on e.g.	the
	0000 as 6000. Allow with k in place of their " 0.1733 " as long as they have a value for		
	roceeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must be		
	ough there may be slips in the coefficients or index work reaching $e^{mt} = D$ ($D > 0$).	May be	
	nplied by a correct answer for their $e^{mt} = D$ Iternatively, takes ln of both sides first and applies correct ln laws to proceed to mak	e t the	
	ubject: $\ln\left(60000e^{-0.6t}\right) = \ln\left(2500e^{0.1733t}\right) \Rightarrow \ln 60000 - 0.6t = \ln 2500 + 0.1733t \Rightarrow t =$		
	wrt 4.11 Must be a value, not an expression in ln terms for this mark.		
	swer only scores no marks, method must be shown and the dM1 must be achieved in e A mark.	order to	

Quest Numl		Scheme	Marks
8. (a	ı)	$f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$	M1 A1
		$= 2(2x+1)^{2} e^{-4x} \{3-2(2x+1)\}$	dM1
		$= 2(2x+1)^{2}(1-4x)e^{-4x}$	A1
		1 1	(4)
(b)	Sets $f'(x) = 0 \Longrightarrow x = -\frac{1}{2}, \frac{1}{4}$	B1
		Either $f\left("-\frac{1}{2}"\right) =$ or $f\left("\frac{1}{4}"\right) =$	M1
		Both $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{4},\frac{27}{8e}\right)$	A1
		(9, 27)	(3)
(c))	$\left(\frac{9}{4},\frac{27}{e}\right)$	B1ft B1ft
			(2) 9 marks
Notes			
(a) M1 A1	Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$ May also be attempted by the quotient rule - equivalent form after e terms cancel. $f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified		
dM1		rectly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an int	
		before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factor.	
	fron	$(2x+)^2 e^{-4x}$ if recovered - look for the correct remaining terms in the bracket { }. Allow going rom an expanded cubic to a factorised form for this mark: $e^{-4x} (2-24x^2-32x^3) \rightarrow 2(2x+1)^2 (1-4x)e^{-4x}$.	
A1	Ach	chieves $2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in either rder.	
(b)			
B1	<i>x</i> =	$-\frac{1}{2}, \frac{1}{4}$ o.e. Both required.	
M1	Atte	empts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into $f(x)$. If substitution not seen may be im	plied by
		er of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},0\right)$	$\left(\frac{8}{e^2}\right)$ (awrt
		B) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.	
A1		$\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e. must be exact but isw after exact coordinates given.	
		by as $x =, y =$ as long as clearly paired. by the M and A marks if seen in part (c) - mark (b) and (c) together.	

(c) B1ft One correct aspect applied correctly to one of their points. So for either 2 added to one of their x coordinates, or a non-zero y coordinate multiplied by 8. E.g. either $\left(\frac{9}{4},...\right)$ or $\left(...,\frac{27}{e}\right)$ or follow through on $\left("\frac{1}{4}"+2,...\right)$ or $\left(...,8\times"\frac{27}{8e}"\right)$ etc. B1ft $\left(\frac{9}{4},\frac{27}{e}\right)$ only or follow through on the y coordinate only so $\left(\frac{9}{4},8\times"\frac{27}{8e}"\right)$ (oe) **only**. B0 if another point is given. Accept awrt 9.93 for second ordinate but note 9.92 is a correct follow through on 1.24. Allow as $x = \frac{9}{4}, y = ...$. SC allow B1B0 if coordinates given wrong way round.

Questi Numb		Marks
9(a)	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x}{\sin x} + \frac{2\sin x \cos x}{\cos x} $ (One Correct identity)	B1
	$=\frac{1-2\sin^2 x}{\sin x}+\frac{2\sin x\cos x}{\cos x}$	M1
	$= \frac{1}{\sin x} - \frac{2\sin^{2} x}{\sin x} + 2\sin x = \frac{1}{\sin x} = \csc x *$	A1*
(b)	E.g. Equation is $\csc^2 \theta = 6 \cot \theta - 4 \Longrightarrow 1 + \cot^2 \theta = 6 \cot \theta - 4$	M1 (3)
	E.g. $\cot^2 \theta - 6 \cot \theta + 5 = 0$	A1
	E.g. $\tan \theta = \frac{1}{5}, 1$	dM1
	$\theta = 0.197, \frac{\pi}{4}$	A1, A1
	π	(5)
(c)	$\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosecx} \operatorname{cot} x \mathrm{d}x = \left[-\operatorname{cosecx}\right]_{-\frac{\pi}{6}}^{\frac{\pi}{4}}$	M1
	$=2-\sqrt{2}$	A1
		(2) 10 marks
Notes (a)	There are lots of ways of proving this statement. In general score as follows	
B 1	For applying at least one CORRECT double or compound angle identity during the pr forming a CORRECT single fraction initially.	
M1 A1*	For a correct overall strategy, e.g. applying double angle identities to reduce terms to single angle arguments and cancelling down terms to eliminate $\cos x$ terms (score at the stage $\cos x$ terms could be eliminated), or attempting a single fraction and applying relevant identities to achieve single angle argument with common factor $\cos x$ in the numerator. Allow slips in signs, such as $\cos 2x = 1 \pm 2\sin^2 x$ for the M but otherwise identities used must be correct. Fully correct proof showing all necessary steps, though the left hand side may be implied (and	
	nay follow initial lines of aside working). Must see the $\frac{1}{\sin x} \rightarrow \operatorname{cosec} x$ during the proof. Do not	
(b)	penalise minor notational slips such as missing an x in one term.	
M1	Correctly applies the result of (a) and attempts to use relevant identities, allowing sign	
	$\pm 1 \pm \cot^2 \theta = \csc^2 \theta$ to produce an equation in $\cot \theta$ or other single trig term only. A alternative is	
	$\frac{1}{\sin^2\theta} = 6\frac{\cos\theta}{\sin\theta} - 4 \Longrightarrow 1 = 6\sin\theta\cos\theta - 4\sin^2\theta \Longrightarrow \left(1 + 4\sin^2\theta\right)^2 = 36\sin^2\theta \left(1 - \sin^2\theta\right)$	
A1	Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alternative, a correct quadratic in $\sin^2 \theta$ or $\cos^2 \theta$ e.g. $52 \sin^4 \theta - 28 \sin^2 \theta + 1 = 0$. The "=0" may be implied by an	
dM1	attempt to solve. May be implied by correct solutions following an unsimplified quadr Attempts to solve quadratic to find at least one value for their trig term used. Usual rul calculator.	
A1	One correct value for θ following from a correct value for the trig term they are worki must have solved a correct quadratic in the dM. Accept awrt 0.197 or 0.785. Degrees a A0A0.	•

Question Number	Scheme	Marks	
A1 Bot	h values correct and no other values in the range. Accept awrt 0.197 and $\frac{\pi}{4}$ only (must be		
exact Note: Allo the Note Ans (c) M1 For May	exact but isw after correct value seen). Allow if a different variable used (such as x). For mixed variables allow the M's but only allow the first A (and final A's) if recovered. Answers without working score no marks. For using part (a) and achieving $\pm k$ cosecx oe for the integral (limits not required for this mark. May arise from longer methods, but must achieve the correct form.		
(a) ALT I	$\frac{\sqrt{2}}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1	
	$= \frac{\cos x \left(1 - 2\sin^2 x\right) + 2\sin x \cos x \sin x}{\sin x \cos x}$ Single fraction with single arguments and common factor cos x in numerator	M1	
	$=\frac{\cos x}{\sin x \cos x} = \frac{1}{\sin x} = \csc x *$	A1* (3)	
(a) ALT II	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1	
	$\equiv \frac{\cos(2x-x)}{\sin x \cos x}$ Applies identity to reach single fraction with single arguments and common factor $\cos x$ in numerator	M1	
	$\equiv \frac{\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \operatorname{cosec} x \ *$	A1* (3)	
(a) ALT III	Note $\cos(x-2x)$ is equally correct for the M1. $\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos^2 x - \sin^2 x}{\sin x} + \frac{2\sin x \cos x}{\cos x}$ Correct identity	B1	
	$\equiv \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin x \cos x}$ Single fraction with single arguments and common factor $\cos x$ in numerator	M1	
	$\equiv \frac{(\cos^2 x + \sin^2 x)\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \csc x \ *$	A1* (3)	

Questie Numbe	Scheme	Marks
10 (a)	$x = \frac{2y^2 + 6}{3y - 3} \Longrightarrow \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = \frac{4y(3y - 3) - 3(2y^2 + 6)}{(3y - 3)^2}$	M1 A1
	$\frac{dx}{dy} = \frac{6y^2 - 12y - 18}{9(y - 1)^2} = \frac{2y^2 - 4y - 6}{3(y - 1)^2} \text{o.e}$	dM1, A1
(b)	<i>P</i> and <i>Q</i> are where $\frac{dx}{dy} = 0$ or where $2y^2 - 4y - 6 = 0$	(4) B1
	Solves $2y^2 - 4y - 6 = 0 \Longrightarrow 2(y-3)(y+1) = 0 \Longrightarrow y = 3, -1$	M1
	Subs $y = -1$ and 3 in $x = \frac{2y^2 + 6}{3y - 3} \implies x =$	dM1
	Achieves $x = -\frac{4}{3}$ and $x = 4$	A1cso
		(4) 8 marks
Notes		
	Attempts the quotient rule. Condone slips on the coefficients - look for $\frac{Ay(3y-3) - B}{(3y-3)}$ A, $B > 0$. Allow a product rule attempt:	$\frac{(2y^2+6)}{y^2}$
	$x = (2y^{2} + 6)(3y - 3)^{-1} \Longrightarrow \left(\frac{dx}{dy}\right) = Ay(3y - 3)^{-1} + (2y^{2} + 6) \times -B(3y - 3)^{-2}$	
	Correct differentiation which may be unsimplified. Allow if the $\frac{dx}{dy}$ is missing or calle	
1	his mark. By product rule $4y(3y-3)^{-1} + (2y^2+6) \times -3(3y-3)^{-2}$ Condone missing br	ackets if
dM1	recovered. Requires an attempt to get a single fraction with some attempt to simplify. For the quotient rule look for a simplification of the numerator with like terms collected giving a 3TQ.	
A1	Attempts via the product rule will require a correct method to put as a single fraction. $\left(\frac{dx}{dy}\right) = \frac{2y^2 - 4y - 6}{3y^2 - 6y + 3}$ or exact simplified equivalent such as $\frac{2(y-3)(y+1)}{3(y-1)^2}$ is after a correct	
	implified answer. Common factor 3 must have been cancelled. Must be seen in part (a	a). A0 if
	alled $\frac{dy}{dx}$ but allow A1 if LHS is not stated.	
Attemp	s at $\frac{dy}{dx}$ can score the first 3 marks if correct. Allow use of x in place of y for the Ms.	
(b)	dr	
	ndicates P and Q are where $\frac{dx}{dy} = 0$ or where their $2y^2 - 4y - 6 = 0$ (which may be t	the
	enominator of $\frac{dy}{dx}$ if they found this instead).	
M1	bolves their 3TQ from an attempt at $\frac{dx}{dy} = 0$ (or denominator of their $\frac{dy}{dx} = 0$), usual rule	28.

dM1 Substitutes both their solutions to $2y^2 - 4y - 6 = 0$ into $x = \frac{2y^2 + 6}{3y - 3}$. Condone slips if the attempt

is clear. At least one should be correct if no method is shown.

A1cso Achieves $x = -\frac{4}{3}$ and x = 4 only. Must be equations not just values but isw after correct equations seen as long as no contrary work is shown (such as giving horizontal lines). Accept equivalents. Must have come from a correct derivative - though allow from an isw form if a numerical factor was lost in the numerator. Must be exact.

Answers from no working score 0/4 as the question instructs use of part (a), so must see the attempt at setting $\frac{dx}{dy} = 0$

Alt (a)	$x = \frac{2y^2 + 6}{3y - 3} \Longrightarrow 3xy - 3x = 2y^2 + 6 \Longrightarrow 3x + 3y\frac{dx}{dy} - 3\frac{dx}{dy} = 4y$	M1 A1
	$\frac{dx}{dy} = \frac{4y - 3x}{3(y - 1)}$	dM1, A1
(b) First 2 marks.	States that <i>P</i> and <i>Q</i> are where $\frac{dx}{dy} = 0$ or where $4y - 3x = 0$	(4) B1
	$\Rightarrow \frac{4}{3}y = \frac{2y^2 + 6}{3y - 3} \Rightarrow 4y^2 - 4y = 2y^2 + 6 \Rightarrow \text{ as main scheme}$	M1
Alt II (a)	$x = \frac{2y^2 + 6}{3y - 3} = \frac{2y}{3} + \frac{2}{3} + \frac{8}{3(y - 1)} \Longrightarrow \frac{dx}{dy} = \frac{2}{3} - \frac{8}{3(y - 1)^2}$	M1 A1
	$\frac{dx}{dy} = \frac{2(y-1)^2 - 8}{3(y-1)^2} = \frac{2y^2 - 4y - 6}{3(y-1)^2} \text{ oe}$	dM1, A1
		(4)
Notes		
(a) M1 Attempts long division or other method to achieve $Ay + B + \frac{C}{3y-3}$ oe and differentiates.		

A1 Correct differentiation.

dM1 Attempts to get a single fraction and simplifies numerator to 3TQ or uses difference of squares to factorise.

A1 Correct answer.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom