

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

June 2022

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

-x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1	H_0 : $\sigma = 1$ H_1 : $\sigma > 1$	B1	Both hypotheses, oe
	v = 100	B1	PI by correct critical value
	$\frac{(n-1)s^2}{\sigma^2} = \frac{(101-1)\times 1.2^2}{1^2}$	M1	PI Condone one slip
	= 144	A 1	
	$X_{100}^2(0.99) = 135.807$	B1	Finds correct critical value or correct probability, 0.0026
	144 > 135.807	A1ft	Correctly compares their X ² test statistic and their critical value or their probability and 0.01
	Reject H _{0.} Evidence to suggest that the standard deviation of the diameters of metal discs produced by the machine has increased	E1ft	States that null hypothesis is rejected and gives a conclusion in context Conclusion must not be definite ft their comparison using a X^2 model
	Total	7	

Q	Answer	Marks	Comments
2(a)	z = 1.8808	B1	AWRT 1.88
	$1.8808 \times \frac{1.6}{\sqrt{n}} = 0.2$	М1	Set up an equation with their $z \times \frac{1.6}{\sqrt{n}}$ oe
	n = 226	A 1	226 or 227
		3	
2(b)	$\overline{x} = 10.18$	B1	AWRT
	10.18 ± 0.2	M1	Follow through their \overline{x}
	(9.98, 10.38)	A 1	AWRT
		3	
	Total	6	

Q	Answer	Marks	Comments
3	H ₀ : There is not an association between gender and survey response H ₁ : There is an association between gender and survey response	B1	Both hypotheses, variables must be stated in at least the null hypothesis oe
	Expected S N M 24 16 F 24 16	M1 A1	At least two expected values correct All correct
	$\sum \frac{\left(\left O - E\right - 0.5\right)^{2}}{E} = \frac{\left(\left 21 - 24\right - 0.5\right)^{2}}{24} + \frac{\left(\left 27 - 24\right - 0.5\right)^{2}}{24} + \frac{\left(\left 19 - 16\right - 0.5\right)^{2}}{16} + \frac{\left(\left 13 - 16\right - 0.5\right)^{2}}{16}$	M1	Attempts to calculate test statistic Condone use of $\sum \frac{\left(O-E\right)^2}{E}$
	= 1.30	A1	AWRT 1.3
	<i>v</i> = 1	B1	PI by correct critical value
	Critical value = 2.71	B1	AWRT 2.7
	1.30 < 2.71	A1ft	Correctly compares their X ² test statistic and their critical value
	Accept H _{0.} Evidence to suggest that there is not an association between gender and survey response	E1ft	States that null hypothesis is not rejected and gives a conclusion in context Conclusion must not be definite ft their comparison using a X^2 model
	Total	9	

Q	Answer	Marks	Comments
4(a)(i)	$P(X \le 1) = 0.0266 [< 0.03]$ $P(X \le 2) = 0.0884 [> 0.03]$	M1	Both seen
	$P(X \ge 11) = 0.0253 \ [< 0.03]$ $P(X \ge 10) = 0.0538 \ [> 0.03]$	M 1	Both seen or $P(X \le 10) = 0.9747$ and $P(X \le 9) = 0.9462$
	Accept if $2 \le X \le 10$	A 1	oe, PI
	<i>X</i> ~Po(5)	M1	Use of
	Type II probability = $P(2 \le X \le 10)$ = $P(X \le 10) - P(X \le 2)$ = $0.9863 - 0.0404$	M1	Follow through their region
	= 0.946	A 1	AWRT
		6	
4(a)(ii)	Power = $1 - 0.946$	M1	Applies power formula with their Type II probability
	= 0.054	A1ft	AWRT ft their probability of Type II error
		2	
4(b)	$X \le 1 \text{ or } X \ge 11$	B1ft	ft their acceptance region in part (a)
		1	
	Total	9	

Q	Answer	Marks	Comments
5	H ₀ : $\mu_{2008} = \mu_{2018}$ H ₁ : $\mu_{2008} \neq \mu_{2018}$	B1	Both hypotheses
	Household Difference	B1	All differences
	$\bar{x} = \frac{11}{5} \text{ or } -\frac{11}{5}$	В1	Sight of 2.2 or –2.2 Must be consistent with their differences
	$S^2 = \frac{1}{5-1} \left(113 - \frac{11^2}{5} \right)$	M1	Attempt at variance formula Allow one slip PI
	= 22.2	A 1	Accept $s = $ AWRT 4.71
	$t = \frac{2.2}{\sqrt{\frac{22.2}{5}}} \text{ or } \frac{-2.2}{\sqrt{\frac{22.2}{5}}}$	M1	Using their mean and variance Condone use of $\frac{(\overline{X}-\overline{Y})-(\mu_x-\mu_y)}{\sqrt{S_p^2\left(\frac{1}{n_x}+\frac{1}{n_y}\right)}}$
	= 1.04 or -1.04	A 1	AWRT Must be consistent with their differences
	<i>v</i> = 4	B1	PI by correct critical value
	t_4 critical value = 2.13 or -2.13	B1	AWRT Must be consistent with their differences unless changes -1.04 to 1.04 first
	1.04 < 2.13	A1ft	Correctly compares their <i>t</i> test statistic and their critical value
	Accept H _{0.} Evidence to suggest that average weekly household income has not changed between 2008 and 2018	E1ft	States that null hypothesis is not rejected and gives a conclusion in context Conclusion must not be definite ft their comparison using either a <i>t</i> or <i>z</i> test statistic
	Total	11	

Q	Answer	Marks	Comments
6	$H_0: \mu_X = \mu_Y$ $H_1: \mu_X > \mu_Y$	B1	Both hypotheses
	$\overline{x} = \frac{65760}{400}$	B1	Implied by sight of 164.4
	$\overline{y} = \frac{49197}{300}$	B1	Implied by sight of 163.99
	$sx^{2} = \frac{1}{400 - 1} \left(10814020 - \frac{65760^{2}}{400} \right)$ or $sy^{2} = \frac{1}{300 - 1} \left(8070022 - \frac{49197^{2}}{300} \right)$	M1	Attempt at one of the variance formulae Allow one slip Implied by one correct answer
	$sx^2 = 7.71$	A 1	AWRT
	$sy^2 = 7.38$	A 1	AWRT
	$z = \frac{164.4 - 163.99}{\sqrt{\frac{7.7}{400} + \frac{7.3}{300}}}$	M 1	Correct numerator for their means, subtracted either way round
	$\sqrt{\frac{7.7}{400} + \frac{7.3}{300}}$	M 1	Correct denominator for their variances
	= 1.96	A 1	AWRT
	z critical value = 1.64	B1	Allow 1.645 AWRT
	1.96 > 1.64	A1ft	Correctly compares their z or t test statistic and critical value
	Reject H _{0.} Evidence to suggest that the average height of women who play basketball is larger than the average height of women who don't play basketball	E1ft	States that null hypothesis is rejected and gives a conclusion in context Conclusion must not be definite ft their comparison using <i>z</i> or <i>t</i> test statistic
	Total	12	

Q	Answer	Marks	Comments
7(a)	$E(R) = \frac{1}{n}E(B_1) = \frac{np}{n}$	M1	Finds $E(R)$ in terms of n and p
	= p therefore unbiased	A 1	Must see p and conclusion n must not be assigned a value
		2	
7(b)	$Var(T) = Var\left(\frac{\sum_{i=1}^{k} B_{i}}{kn}\right) = \frac{knp(1-p)}{k^{2}n^{2}}$	M1	Finds Var(<i>T</i>) in terms of <i>k</i> , <i>n</i> and <i>p</i> , condoning slips May be seen in part (c) if not attempted in this part
	$= \frac{p(1-p)}{kn} \text{ or } \frac{kp(1-p)}{k^2n}$	A 1	Correct simplification May be seen in part (c) if not attempted in this part
	As $n \to \infty$, $Var(T) \to 0$	M1	Applies limiting process to their Var(T)
	Therefore consistent estimator	A 1	cso
		4	
7(c)	$Var(R) = Var\left(\frac{B_1}{n}\right) = \frac{np(1-p)}{n^2}$	M 1	Finds Var(<i>R</i>) in terms of <i>n</i> and <i>p</i> , condoning slips PI by correct simplified Var(<i>R</i>) or relative efficiency
	$= \frac{p(1-p)}{n}$	A 1	Correct simplification PI by correct relative efficiency
	Relative Efficiency = $\frac{\frac{1}{Var(T)}}{\frac{1}{Var(R)}} = \frac{\frac{kn}{p(1-p)}}{\frac{n}{p(1-p)}}$	M 1	Applies formula with either the correct $Var(T)$ or their $Var(T)$ from part (b) and their $Var(R)$
	= <i>k</i>	A1	Correct simplification
	Estimator T is more efficient than estimator R	E 1	cso
		5	
	Total	11	

Q	Answer	Marks	Comments
8(a)	$\mathbf{M}_{X_i}(t) = \mathbf{E}\left(e^{tX_i}\right) = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} dx$	M 1	Applies mgf formula with any or missing limits Condone spurious notation
	$= \left[\frac{\lambda e^{(t-\lambda)x}}{t-\lambda}\right]_0^{\infty}$	M 1	Integrates to $Ae^{(t-\lambda)x}$
	$=-rac{\lambda}{t-\lambda}$	A 1	Applies limits to obtain a correct form oe
	$= \left(\frac{\lambda - t}{\lambda}\right)^{-1}$ $= \left(1 - \frac{t}{\lambda}\right)^{-1}$	A 1	Reaches correct form with no errors and at least one intermediate line Condone interchangeable x and x_i AG CSO
		4	
8(b)	$\mathbf{M}_{X}(t) = \left(1 - \frac{t}{\lambda}\right)^{-n}$	B1	
	$\mathbf{M}_{X}'(t) = \frac{n}{\lambda} \left(1 - \frac{t}{\lambda} \right)^{-n-1}$	M1	Differentiates to $A\left(1-\frac{t}{\lambda}\right)^{-n-1}$
	$\mathbf{M}_{X}(t) = \frac{1}{\lambda} \left(1 - \frac{1}{\lambda} \right)$	A 1	$\frac{n}{\lambda} \left(1 - \frac{t}{\lambda} \right)^{-n-1} $ oe
	$\mathbf{M}_{X}''(t) = \frac{n(n+1)}{\lambda^{2}} \left(1 - \frac{t}{\lambda}\right)^{-n-2}$	M1	Differentiates to $A\left(1-\frac{t}{\lambda}\right)^{-n-2}$
	$\lambda^2 \left(\begin{array}{c} \lambda \end{array} \right)$	A 1	$\frac{n(n+1)}{\lambda^2} \left(1 - \frac{t}{\lambda}\right)^{-n-2} $ oe
	$Var(X) = M_X(0) - (M_X(0))^2$		
	$= \frac{n(n+1)}{\lambda^2} \left(1 - \frac{0}{\lambda}\right)^{-n-2} - \left(\frac{n}{\lambda} \left(1 - \frac{0}{\lambda}\right)^{-n-1}\right)^2$	M1	Applies variance formula with their $M_{x}(0)$ and $M_{x}(0)$
	$=\frac{n}{\lambda^2}$	A 1	CAO
		7	

Q	Answer	Marks	Comments
8(b) ALT	$\mathbf{M}_{X_i}(t) = \frac{1}{\lambda} \left(1 - \frac{t}{\lambda} \right)^{-2}$	B1	Condone X for X_i oe
	$2(x^{-1})^{-3}$	M1	Differentiates to $A\left(1-\frac{t}{\lambda}\right)^{-3}$ Condone X for X_i
	$\mathbf{M}_{X_i}(t) = \frac{2}{\lambda^2} \left(1 - \frac{t}{\lambda} \right)^{-3}$	A 1	$\frac{2}{\lambda^2} \left(1 - \frac{t}{\lambda} \right)^{-3} $ oe
	$M_{X_i}(0) = \frac{1}{\lambda}$ and $M_{X_i}(t) = \frac{2}{\lambda^2}$	M1	Condone X for X_i $X_i \text{ must be seen and used}$
	$Var(X_i) = \frac{1}{\lambda^2}$	A 1	Must be $Var(X_i) = \frac{1}{\lambda^2}$ not $Var(X) = \frac{1}{\lambda^2}$
	$Var(X) = nVar(X_i) = n \times \frac{1}{\lambda^2}$	M1	Multiplies their $Var(X_i)$ by n
	$=\frac{n}{\lambda^2}$	A 1	CAO
		7	
8(c)(i)	$E(Y) = 2\lambda E(X) = 2\lambda \times \frac{n}{\lambda}$	M1	$2\lambda \times \text{their E}(X)$
	= 2 <i>n</i>	A 1	CAO
		2	
8(c)(ii)	$Var(Y) = 4\lambda^2 Var(X) = 4\lambda^2 \times \frac{n}{\lambda^2}$	M1	$4\lambda^2 \times \text{their Var}(X)$
	= 4 <i>n</i>	A 1	CAO
		2	
	Total	15	