

INTERNATIONAL AS FURTHER MATHEMATICS 9665

FM02 Further Pure Mathematics Unit FPSM1

Mark scheme

June 2019

Version: 1.0 Final

Jun19FM01MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	M Mark is for method			
	m	Mark is dependent on one or more M marks and is for method		
	Α	Mark is dependent on M or m marks and is for accuracy		
	В	Mark is independent of M or m marks and is for method and accuracy		
	E	Mark is for explanation		
\checkmark	or ft	Follow through from previous incorrect result		
	CAO	Correct answer only		
	CSO	Correct solution only		
	AWFW	Anything which falls within		
	AWRT	Anything which rounds to		
	ACF	Any correct form		
	AG	Answer given		
	SC	Special case		
	oe	Or equivalent		
	A2, 1	2 or 1 (or 0) accuracy marks		
	– <i>x</i> EE	Deduct x marks for each error		
	NMS	No method shown		
	PI	Possibly implied		
	SCA	Substantially correct approach		
	sf	Significant figure(s)		
	dp	Decimal place(s)		

|--|

Q	Answer	Mark	Total	Comments
	$hf(x, y) = 0.05\sqrt{5 + 2 \times 7.2} \\= 0.220227$	M1	5	PI
1	$y_2 = 7.2 + 0.220227 = 7.420227$	A1ft		7.2 + their value of $hf(x, y)$
	$y_3 = 7.420227 + 0.05\sqrt{5.05 + 2 \times 7.420227}$ (= 7.64322)	m1		
		A1ft		
	7.6432	A1		CAO
Total	5			

Q	Answer	Marks	Total	Comments			
2(a)	$\log_{10} y = \log_{10} a + \log_{10} b^x$	M1	3				
	$Y = \log_{10} a + x \log_{10} b$	A1					
	This is a linear relationship between <i>Y</i> and <i>x</i> .	E1					
2(b)			5				
	$(1.43136 =) \log_{10} 27 = \log_{10} a + 3\log_{10} b$ and $(1.07918 =) \log_{10} 12 = \log_{10} a + 8\log_{10} b$	M1A1		For forming two equations			
	$0.35218 = -5\log_{10} b$	M1		For eliminating 1 unknown			
	b = 0.850	A1					
	<i>a</i> = 43.9	A1		A1A0 for b = awrt 0.85 and a = awrt 44			
	Total 8						

Q	Answer	Mark		Comments				
3(a)(i)	Stretch parallel to y-axis	B1	2					
	Scale factor 2	B1						
3(ii)	Enlargement	B1	2					
	Scale factor 4	B1						
3(iii)	reflection	B1	2					
	In the line $y = x$	B1						
3(b)	$\mathbf{M} = \mathbf{B}\mathbf{A} \\ \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$	B1 B1	2	PI				
3(c)	Det(M) = 32	M1	3					
	Det(M) × 1.5	M1						
	48	A1ft						
	Total 11							

Q	Answer	Marks	Total	Comments			
4(a)	f(4.3) = -5.95 and $f(4.4) = 11.69$	M1					
	Change of sign and f is continuous on the interval (4.3, 4.4) so α is in the interval.	A1	2				
4(b)	$f(4.35) = 2.63$; positive so $\alpha < 4.35$	M1					
	f(4.325) = -1.72; negative so α > 4.325	A1	3				
	α lies between 4.325 and 4.350	A1					
4(c)	$f'(x) = 4x^3 - 34x - 5$	B1		PI			
	$x_2 = 4.3 - \frac{-5.95}{166.828}$	M1 M1	5	M1 for numerator in correct form, possibly unsimplified (PI) M1 for denominator in correct form, possibly unsimplified (PI)			
	$x_2 = 4.336$	A1		4.335664876			
	$x_3 = 4.335$	A1		4.334972043			
	Total 10						

Q	Answer	Mark		Comments				
	·							
5(a)	$\mathbf{D}^{\mathrm{T}} = \begin{pmatrix} -4 & 2 & -3 \\ 3 & 10 & -15 \\ -1 & -11 & 5 \end{pmatrix}$	M1						
	$\mathbf{C}\mathbf{D}^{\mathrm{T}} = \begin{pmatrix} -23 & 0 & 0\\ 0 & -23 & 0\\ 0 & 0 & -23 \end{pmatrix}$	M1	3					
	= -23 I	A1		-23 I without sight of D ^T scores 1 mark				
5(b)	$CD^{T} = (CD^{T})^{T}$ (as any values that would change position equal zero.)	E1	3					
	$(\mathbf{C}\mathbf{D}^{\mathrm{T}})^{\mathrm{T}} = (\mathbf{D}^{\mathrm{T}})^{\mathrm{T}}\mathbf{C}^{\mathrm{T}}$	E1		for using $(\mathbf{AB})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$				
	$= \mathbf{D}\mathbf{C}^{\mathrm{T}}$	E1						
	Total 6							

Q	Answer	Mark	Comments
	$P(J) = \frac{1}{5} \times \frac{2}{5} + \frac{1}{5} \times \frac{3}{10} + \frac{3}{5} \times \frac{7}{10}$	M1	Correct attempt to find P(J) Implied by sight of 0.56 or $\frac{14}{25}$
6	$P(C J) = \frac{P(J C)P(C)}{P(J Y)P(Y) + P(J C)P(C) + P(J T)P(T)}$ $= \frac{\frac{1}{5} \times \frac{2}{5}}{\frac{1}{5} \times \frac{2}{5} + \frac{1}{5} \times \frac{3}{10} + \frac{3}{5} \times \frac{7}{10}}$	M1	Apply Bayes Theorem
	$=\frac{1}{7}$ oe	A1	Do not accept decimal unless it is 0.142857
	Total	3	

Q	Answer	Mark	Comments
	$\rho_{XY} = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}$ $0.78 = \frac{\operatorname{cov}(X, Y)}{\sqrt{2 \times 8}}$	M1	Substitute values into formula for ρ_{XY}
7	cov (X, Y) = 3.12 or $\frac{78}{25}$ oe	A1	PI. Find cov(X, Y)
	Var $(X + Y) = Var (X) + Var (Y)$ + 2 cov (X, Y) = 2 + 8 + 2 × 3.12	M1	Substitute values into formula for Var (X + Y)
	= 16.24 or $\frac{406}{25}$ oe	A1	
	Total	4	

Q	Answer	Mark	Comments
	$\frac{1-p}{p^2} = 6$	M1	Forms equation using formula for var (X)
8(a)	0 = 6p2 + p - 10 = (2p + 1)(3p - 1)	M1	Solve quadratic Implied by $p = 1/3$ or $-1/2$
	$p = \frac{1}{3}$	A1	Loses mark if $p = -\frac{1}{2}$ not discounted
8(b)	$\frac{1}{\left(\frac{1}{3}\right)} = 3$	B1ft	ft their p from (a) if 0 Loses mark if second answer given
8(c)	P(X ≤ 2) = 1 - $\left(1 - \frac{1}{3}\right)^2$ or $\frac{1}{3} + \frac{2}{9}$	M1	Applies formula for cdf of geometric with their p from (a) if $0or adds P(X = 1) and P(X = 2)$
	$=\frac{5}{9}$ oe	A1	Accept 0.556 AWRT
	Total	6	

Q	Answer	Mark	Comments
9(a)	$\frac{5}{8} + \frac{3}{16}$	M1	Identifies and attempts to add correct probabilities
	0.8125 or $\frac{13}{16}$ oe	A1	
9(b)(i)	$G'_{Y}(t) = \frac{1}{16} + \frac{10}{8}t + \frac{9}{16}t^{2}$	M1	Correct expression for G' _Y (t)
	Mean = $G'_{Y}(1) = 1.875 \text{ or } \frac{15}{8} \text{ oe}$	A1	Correct mean
	$G''_{Y}(t) = \frac{10}{8} + \frac{18}{16}t$	B1ft	ft their G' _Y (t)
9(b)(ii)	Variance = G'' _Y (1) + $\mu - \mu^2$ = $\frac{10}{8} + \frac{18}{16} + 1.875 - 1.875^2$	M1	Substitutes values into formula for variance
	= 0.734375 or $\frac{47}{64}$ oe	A1	
	Total	7	

Q	Answer	Marks	Total	Comments

MARK SCHEME - INTERNATIONAL AS FURTHER MATHEMATICS - FM02 - JUNE 2019

10	$r_{A} = (2\mathbf{i} + 3\mathbf{j})t$ $r_{B} = (3\mathbf{i} - 4\mathbf{j})t + z\mathbf{j}$	M1		
	$r_B - r_A = ti + (z - 7t)j$ $s^2 = t^2 + (z - 7t)^2$	A1		
	$\frac{d(s^2)}{dt} = 100t - 14z$	M1		
	For min distance $t = \frac{7z}{50}$	A1		
	$\frac{1}{50} = 28$ $z = 200$	A1	5	
		Total	5	

Q	Answer	Marks	Total	Comments
11	$[v] = [M]^a \times [r]^b \times [G]^c$ $LT^{-1} = M^a L^b L^{3c} M^{-c} T^{-2c}$	M1A1		
	0 = a - c 1 = b + 3c -1 = -2c $c = \frac{1}{2}, b = -\frac{1}{2}, a = \frac{1}{2}$	M1 A1 A1	5	
		Total	5	

Q	Answer	Marks	Total	Comments
12(a)	$F(0.05) = \frac{k}{160000}$	M1A1	2	

	0.1		1	
12(b)	$I = \int_0^{0.1} kt^2 (t - 0.1)^2 dt$	M1		
	$= k \left[\frac{t^5}{5} - \frac{t^4}{20} + \frac{t^3}{300} \right]_0^{0.1}$	M1A1		
	$=\frac{\kappa}{3000000}$	A1	4	
12(c)	$n = 0.6 \times 4.8 = 2.88$	M1		
12(0)	$v = 0.0 \times 1.0 = 2.00$			
	$\frac{k}{20000000} =$			
	$0.25 \times 2.88 - 0.25 \times (-4.8)$	M1A1		Condone 1 wrong sign for M1
	$k = 1.92 \times 37500 = 5760000$ or 5800000	A1	4	
		Total	10	