

# INTERNATIONAL AS FURTHER MATHEMATICS

## FM02

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

### Mark scheme

January 2023

Version: 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

#### **Copyright information**

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

#### Key to mark scheme abbreviations

| М                       | Mark is for method                                                 |
|-------------------------|--------------------------------------------------------------------|
| m                       | Mark is dependent on one or more M marks and is for method         |
| Α                       | Mark is dependent on M or m marks and is for accuracy              |
| В                       | Mark is independent of M or m marks and is for method and accuracy |
| E                       | Mark is for explanation                                            |
| $\sqrt{\mathbf{or}}$ ft | Follow through from previous incorrect result                      |
| CAO                     | Correct answer only                                                |
| CSO                     | Correct solution only                                              |
| AWFW                    | Anything which falls within                                        |
| AWRT                    | Anything which rounds to                                           |
| ACF                     | Any correct form                                                   |
| AG                      | Answer given                                                       |
| SC                      | Special case                                                       |
| oe                      | Or equivalent                                                      |
| A2, 1                   | 2 or 1 (or 0) accuracy marks                                       |
| <i>–x</i> EE            | Deduct <i>x</i> marks for each error                               |
| NMS                     | No method shown                                                    |
| PI                      | Possibly implied                                                   |
| SCA                     | Substantially correct approach                                     |
| sf                      | Significant figure(s)                                              |
| dp                      | Decimal place(s)                                                   |

| Q | Answer                                                                                                                                             | Marks   | Comments                                                                                                                       |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|
| 1 | $hf(x,y) = 0.1 \times \left(3 \times 1 + \frac{2 \times 1^3}{-1}\right)$ $= 0.1$                                                                   | M1      |                                                                                                                                |
|   | $y_2 = -1 + 0.1$<br>= -0.9                                                                                                                         | A1      |                                                                                                                                |
|   | $y_{3} = -0.9 + 0.1 \times \left(3 \times 1.1 + \frac{2 \times 1.1^{3}}{-0.9}\right)$ $= -0.9 + \frac{77}{2250}$ $= -0.9 + 0.03422$ $= -0.8657778$ | M1      | correct use of formula<br><b>PI</b> by values to at least 5 decimal<br>places<br>or equivalent eg<br>$y_3 = \frac{-974}{1125}$ |
|   | =-0.8658                                                                                                                                           | A1<br>4 | CAO                                                                                                                            |

| Question 1 Tot | I 4 |  |
|----------------|-----|--|
|----------------|-----|--|

| Q    |   |      | Ansv | ver  |      | Marks | Comments                    |
|------|---|------|------|------|------|-------|-----------------------------|
| 2(a) | Р | 1    | 0.5  | 0.33 | 0.25 |       |                             |
|      | Q | 0.91 | 1.14 | 1.20 | 1.25 | B1    | CAO<br>Condone 1.2 for 1.20 |
|      |   |      |      |      |      | 1     |                             |

| Q    | Answer                         | Marks | Comments                                   |
|------|--------------------------------|-------|--------------------------------------------|
| 2(b) | Their points plotted correctly | B1ft  | All their points plotted $\pm$ 0.5 squares |
|      | Line of best fit drawn         | B1ft  | Their line of best fit drawn               |
|      | ₽↑                             |       |                                            |
|      | 1.5                            |       |                                            |
|      | 1.0                            |       |                                            |
|      | 0.5                            |       |                                            |
|      | 0 0.2 0.4 0.6                  | 0.8   | 1.0 1.2 P                                  |
|      | 0 0.2 0.4 0.0                  | 2     | 1.0 1.2 1                                  |

| Q       | Answer                          | Marks | Comments                                                            |
|---------|---------------------------------|-------|---------------------------------------------------------------------|
| 2(c)(i) | b = their intercept<br>b = 1.4  | B1ft  | Intercept must be from a suitable line of best fit for their points |
|         | a = their gradient<br>a = -0.45 | B1ft  | Gradient must be from a suitable line of best fit for their points  |
|         |                                 | 2     |                                                                     |

| Q        | Answer                                | Marks | Comments                                                                                                        |
|----------|---------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|
| 2(c)(ii) | $\frac{1}{y} = \frac{-0.45}{x} + 1.4$ | B1ft  | alternative forms accepted eg<br>$y = \frac{x}{1.4x - 0.45}$<br><b>ft</b> their values of <i>a</i> and <i>b</i> |
|          |                                       | 1     |                                                                                                                 |

| Q    | Answer                                  | Marks | Comments                              |
|------|-----------------------------------------|-------|---------------------------------------|
| 2(d) | $y = \frac{1.6}{1.4 \times 1.6 - 0.45}$ |       |                                       |
|      | = 0.89                                  | B1ft  | <b>ft</b> their values of $a$ and $b$ |
|      |                                         | 1     |                                       |

| Question 2 To | al 7 |  |
|---------------|------|--|
|---------------|------|--|

| Q    | Answer                                                                                                                                                    | Marks | Comments                                                                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 3(a) | $\begin{bmatrix} 4+4k & 24k & -3+12k \\ 0 & 33 & 12 \\ 4 & 6 & 9 \end{bmatrix} = \begin{bmatrix} 20k & 24k & 0 \\ 0 & 33 & 12 \\ 4 & 6 & 9 \end{bmatrix}$ | M1    | equating their obtained matrix with the $\mathbf{A}$ +4 $\mathbf{B}$ and using at least one expression to evaluate $k$ |
|      | 4 = 16k  or  -3 + 12k = 0<br>$k = \frac{1}{4}$                                                                                                            | A1    | cso                                                                                                                    |
|      |                                                                                                                                                           | 2     |                                                                                                                        |

| Q       | Answer                                                                                                                                                                                                                      | Marks      | Comments                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| 3(b)(i) | $\begin{bmatrix} 4 & 0 & -3 \\ -2 & 1 & -2 \\ 4 & -2 & 5 \end{bmatrix} \begin{bmatrix} 0.25 & 1.5 & 0.75 \\ 0.5 & 8 & 3.5 \\ 0 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | M1<br>A1ft | showing correct multiplication<br>allowing for <b>ft</b> with their value of $k$<br><b>ft</b> their value of $k$ |
|         |                                                                                                                                                                                                                             | 2          |                                                                                                                  |

| Q        | Answer                                                                                                                                                                                                                  | Marks | Comments                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3(b)(ii) | $     \mathbf{C} \begin{bmatrix}       1 & 6 & 3 \\       2 & 32 & 14 \\       0 & 8 & 4   \end{bmatrix} = \mathbf{AB}   $ $     \mathbf{C}(4\mathbf{B}) = \mathbf{AB}   $ $     \mathbf{C} = \frac{1}{4}\mathbf{A}   $ | M1    | equating $\begin{bmatrix} 1 & 6 & 3 \\ 2 & 32 & 14 \\ 4 & 6 & 9 \end{bmatrix} = 4\mathbf{B}$<br>or $\mathbf{C} \begin{bmatrix} 1 & 6 & 3 \\ 2 & 32 & 14 \\ 4 & 6 & 9 \end{bmatrix} =$ their $\mathbf{AB}$ |
|          | $= \begin{bmatrix} 1 & 0 & -0.75 \\ -0.5 & 0.25 & -0.5 \\ 1 & -0.5 & 1.25 \end{bmatrix}$                                                                                                                                | Α1    | correct Matrix for <b>C</b>                                                                                                                                                                               |
|          |                                                                                                                                                                                                                         | 2     |                                                                                                                                                                                                           |

| Question 3 Total | 6 |  |
|------------------|---|--|
|------------------|---|--|

| Q    | Answer                                                                                                                                                    | Marks | Comments                                                                                                                                                  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(a) | f(1) = 3<br>f(2) = -3.5                                                                                                                                   | M1    | Correct evaluation of a suitable interval                                                                                                                 |
|      | As there has been a change of sign between $x = 1$ and $x = 2$ , and as the curve is continuous [on this interval], then there is a root $1 < \gamma < 2$ | A1    | Must state that there is a change of<br>sign and that the curve is<br>continuous (condone unbroken)<br>and concludes a root is present in<br>the interval |
|      |                                                                                                                                                           | 2     |                                                                                                                                                           |

| Q    | Answer                                                                                                                       | Marks    | Comments                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|
| 4(b) | Tangent drawn at $x = -1$<br>The next approximation for a root is closer to $\alpha$ rather than $\beta$ [see diagram below] | B1<br>E1 | Gives justification that using $x_1 = -1$<br>will converge to the root $\alpha$ where $-2 < \alpha < -1$ |
|      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        | 0.9      | 5 1.0 1.5 2.0 x                                                                                          |
|      |                                                                                                                              | 2        |                                                                                                          |

| Q    | Answer                                                                                                                                                                                                | Marks   | Comments                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|
| 4(c) | $f(x) = \frac{1}{x} - 2x^{2} + 4$<br>f'(x) = $\frac{-1}{x^{2}} - 4x$                                                                                                                                  | М1      | correct derivative                                                                      |
|      | $f'(-1) = \frac{-1}{(-1.3)^2} - 4(-1.3)$<br>= 4.60828402                                                                                                                                              | A1      | <b>PI</b><br>AWRT 4.608                                                                 |
|      | $x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $x_{2} = -1.3 - \frac{\frac{1}{-1.3} - 2(-1.3)^{2} + 4}{\frac{-1}{(-1.3)^{2}} - 4(-1.3)}$ $= -1.3 - \frac{\frac{1}{-1.3} - 2(-1.3)^{2} + 4}{4.60828402}$ | М1      | correctly substituting into formula or obtaining correct value for $\frac{f(x)}{f'(x)}$ |
|      | = -1.3 + 0.0323832<br>= -1.267616846                                                                                                                                                                  |         |                                                                                         |
|      | =-1.2676                                                                                                                                                                                              | A1<br>4 | correct answer to 4 dp                                                                  |

| Question 4 Total | 8 |  |
|------------------|---|--|
|------------------|---|--|

| Q       | Answer                                                                                                                                                                                                                                                                                                                       | Marks | Comments                                                                                     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|
| 5(a)(i) | $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ p \end{bmatrix}$ $\Rightarrow 2\cos 2\theta = -1 \text{ and } 2\sin 2\theta = p$ $\Rightarrow \cos 2\theta = -\frac{1}{2}$ $\cos^{2} 2\theta + \sin^{2} 2\theta = 1$ | M1    | Obtains correct expressions<br>containing $p$ , cos $2\theta$ and sin $2\theta$<br><b>PI</b> |
|         | $\Rightarrow \left(\frac{-1}{2}\right)^2 + \left(\frac{p}{2}\right)^2 = 1$ $\Rightarrow \left(\frac{p}{2}\right)^2 = \frac{3}{4}$                                                                                                                                                                                            | М1    | Eliminates $\theta$ to gain an equation to find $p$ or finds $2\theta$ = 240° <b>oe</b>      |
|         | ⇒ $p = \pm \sqrt{3}$ but $p < 0$<br>∴ $p = -\sqrt{3}$                                                                                                                                                                                                                                                                        | A1    | cso                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                              | 3     |                                                                                              |

| Q        | Answer                                                                                                               | Marks | Comments                                 |
|----------|----------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|
| 5(a)(ii) | $\mathbf{M} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ | B1ft  | <b>ft</b> their value of $p$ or $\theta$ |
|          |                                                                                                                      | 1     |                                          |

| Q         | Answer                                                                   | Marks | Comments                                                                        |
|-----------|--------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|
| 5(a)(iii) | $\cos 2\theta = -\frac{1}{2}$ and $\sin 2\theta = -\frac{\sqrt{3}}{2}$   |       |                                                                                 |
|           | $\tan 2\theta = \sqrt{3}$ $2\theta = 240^{\circ}$ $\theta = 120^{\circ}$ | М1    | <b>PI</b> attempts to find the angle for the equation of the line of reflection |
|           | $y = \tan 120^{\circ} x \text{ or } y = -\sqrt{3}x$                      | A1ft  | ft their values from (a)(ii)                                                    |
|           | Reflection in the line $y = -\sqrt{3}x$                                  | A1    | describing fully with equation of the line of reflection <b>CSO</b>             |
|           |                                                                          | 3     |                                                                                 |

| Q       | Answer                                                                                                                                        | Marks | Comments                                                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|
| 5(b)(i) | $\begin{bmatrix} c & d \\ d & -c \end{bmatrix} \begin{bmatrix} -1 \\ -\sqrt{3} \end{bmatrix} = \begin{bmatrix} -1 \\ -\sqrt{3} \end{bmatrix}$ | M1    | <b>PI</b> obtains correct matrix equation could be in terms of $p$ <b>ft</b> their value of $p$             |
|         | $\Rightarrow -c - \sqrt{3}d = -1$<br>and<br>$\Rightarrow -d + \sqrt{3}c = -\sqrt{3}$                                                          | A1ft  | <b>PI</b> obtains both correct simultaneous equations could be in terms of $p$ <b>ft</b> their value of $p$ |
|         | $d=rac{\sqrt{3}}{2}$ and $c=-rac{1}{2}$                                                                                                     | A1    |                                                                                                             |
|         |                                                                                                                                               | 3     |                                                                                                             |

| Q        | Answer                                                                                                                                                                                                                    | Marks | Comments                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|
| 5(b)(ii) | $\mathbf{NM} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ | M1    | using correct order of multiplication <b>NM</b> using their $c$ and $d$ and their <b>M</b> |
|          | $= \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$                                                                                                                 | A1    | cso                                                                                        |
|          |                                                                                                                                                                                                                           | 2     |                                                                                            |

| Q         | Answer                                                                                                         | Marks    | Comments                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|
| 5(b)(iii) | $\Rightarrow \cos \theta = -\frac{1}{2} \text{ and } \sin \theta = -\frac{\sqrt{3}}{2}$ $\theta = 240^{\circ}$ | M1       | Correct method to find $\theta$                                                                     |
|           | Single transformation is a rotation about the origin of 120° clockwise                                         | B1<br>A1 | Identifies transformation as rotation<br>Full description<br><b>oe</b> such as 240° [anticlockwise] |
|           |                                                                                                                | 3        |                                                                                                     |

| Question 5 To |
|---------------|
|---------------|

| Q    | Answer                                          | Marks | Comments                                                                         |
|------|-------------------------------------------------|-------|----------------------------------------------------------------------------------|
| 6(a) | $G_X(t) = 0.008 + 0.096t + 0.384t^2 + 0.512t^3$ | M1    | expands $G_X(t)$ or uses chain rule to differentiate to $k(0.2 + 0.8t)^2$        |
|      | $G'_{X}(t) = 0.096 + 0.768t + 1.536t^{2}$       | A1    | Obtains correct $G'_X(t)$<br><b>oe</b> , chain rule gives<br>$2.4(0.2 + 0.8t)^2$ |
|      | $G'_{X}(1) = 0.096 + 0.768(1) + 1.536(1)^{2}$   | M1    | attempts to find G'x(1)                                                          |
|      | $E(X) = G'_X(1) = 2.4$                          | A1    |                                                                                  |
|      |                                                 | 4     |                                                                                  |

| Q    | Answer                               | Marks | Comments                                                                |
|------|--------------------------------------|-------|-------------------------------------------------------------------------|
| 6(b) | $P(X \ge 2) = 0.384 + 0.512 = 0.896$ | B1ft  | <b>ft</b> their expanded $G_X(t)$ , their 0.384 + their 0.512 <b>oe</b> |
|      |                                      | 1     |                                                                         |

| Question 6 Total 5 |
|--------------------|
|--------------------|

| Q    | Answer                   | Marks | Comments                                                                      |
|------|--------------------------|-------|-------------------------------------------------------------------------------|
| 7(a) | $\frac{1-p}{p^2} = 3.75$ | M1    | forms correct equation                                                        |
|      | $3.75p^2 + p - 1 = 0$    | M1    | rearranges to three term quadratic =<br>0<br>oe<br>PI by correct final answer |
|      | <i>p</i> = 0.4           | A1    | if –2/3 seen, it must be rejected                                             |
|      |                          | 3     |                                                                               |

| Q    | Answer     | Marks | Comments                      |
|------|------------|-------|-------------------------------|
| 7(b) | E(X) = 2.5 | B1ft  | <b>ft</b> their $\frac{1}{p}$ |
|      |            | 1     |                               |

| Q    | Answer                         | Marks | Comments                                                         |
|------|--------------------------------|-------|------------------------------------------------------------------|
| 7(c) | $P(X \le 5) = 1 - (1 - 0.4)^5$ | M1    | attempts to calculate $(1 - \text{their } p)^5 \text{ oe}$<br>PI |
|      | = 0.92224                      | A1    | oe                                                               |
|      |                                | 2     |                                                                  |

| Question 7 T |
|--------------|
|--------------|

| Q    | Answer                     | Marks | Comments        |
|------|----------------------------|-------|-----------------|
| 8(a) | E(X) = 4                   | B1    | oe, Pl          |
|      | E(Y) = 5.5                 | B1    | oe, PI          |
|      | E(4X - 3Y) = 4E(X) - 3E(Y) | M1    | applies formula |
|      | E(4X-3Y) = -0.5            | A1    |                 |
|      |                            | 4     |                 |

| Q    | Answer                                      | Marks | Comments                                       |
|------|---------------------------------------------|-------|------------------------------------------------|
| 8(b) | Var(X) = 4                                  | B1    | oe                                             |
|      | Var( <i>Y</i> ) = 8.25                      | B1    | Oe                                             |
|      | $Cov(X, Y) = \sqrt{4 \times 8.25}\rho$      | M1    | express covariance in terms of $\rho$<br>PI    |
|      | $10 = 4 + 8.25 + 2\sqrt{4 \times 8.25}\rho$ | M1    | form correct equation to find $\rho$ <b>oe</b> |
|      | $\rho = -0.196$                             | A1    | AWRT                                           |
|      |                                             | 5     |                                                |
|      |                                             |       |                                                |

| otal 9 | 9 | Question 8 Total |
|--------|---|------------------|
|--------|---|------------------|

| Q | Answer                                              | Marks | Comments                                                                   |
|---|-----------------------------------------------------|-------|----------------------------------------------------------------------------|
| 9 | $MLT^{-2} = \left[k\right] \left(LT^{-1}\right)^n$  | M1 A1 | M1: dimensions equation with at least one side correct                     |
|   |                                                     |       | Condone consistent use of units                                            |
|   |                                                     |       | <b>A1</b> : correct dimensions equation<br>Condone consistent use of units |
|   | $MLT^{-2} = [k]L^{n}T^{-n}$ $[k] = ML^{1-n}T^{n-2}$ | A1    | correct dimensions for $k$                                                 |
|   |                                                     | 3     |                                                                            |

| Question 9 To | 3 |
|---------------|---|
|---------------|---|

| Q     | Answer                               | Marks | Comments                                        |
|-------|--------------------------------------|-------|-------------------------------------------------|
| 10(a) | $I = 0.3 \times 4 - 0.3 \times (-6)$ | M1    | uses impulse equation condone sign errors       |
|       | I = 3 N s                            | A1    | obtains correct magnitude<br>must include units |
|       |                                      | 2     |                                                 |

| Q     | Answer                       | Marks | Comments                                                                 |
|-------|------------------------------|-------|--------------------------------------------------------------------------|
| 10(b) | $\frac{1}{2} \times 75T = 3$ | M1    | finds impulse in terms of $T$ from graph and sets equal to their impulse |
|       | $T = \frac{6}{75} = 0.08$    | A1    | correct T                                                                |
|       |                              | 2     |                                                                          |

| Question 10 Tota | 4 |  |
|------------------|---|--|
|------------------|---|--|

| Q  | Answer                              | Marks | Comments                                                                           |
|----|-------------------------------------|-------|------------------------------------------------------------------------------------|
| 11 | -20 + 2t = t + 80                   | M1    | forms equation to find the time when<br>they meet <b>oe</b><br>condone sign errors |
|    | <i>t</i> = 100                      | A1    | correct time                                                                       |
|    | $450 - 0.5 \times 100 = 150 + 100U$ | M1    | forms equation to find $U  \mathbf{oe}$                                            |
|    | <i>U</i> = 2.5                      | A1    | correct $U$                                                                        |
|    |                                     | 4     |                                                                                    |

| Question 11 Total | 4 |  |
|-------------------|---|--|
|-------------------|---|--|

| Q     | Answer                                                                    | Marks    | Comments                                                                            |
|-------|---------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|
| 12(a) | 7×0.8 = 5.6                                                               | B1       | finds speed after collision with the wall                                           |
|       | $0.3 \times 2 + 0.5 \times (-5.6) = 0.3v_P + 0.5v_Q$<br>-22 = 3v_P + 5v_Q | M1<br>A1 | equation for conservation of<br>momentum<br>condone sign errors<br>correct equation |
|       | $v_P - v_Q = -0.5(2 - (-5.6))$<br>$v_P - v_Q = -3.8$                      | M1       | applies equation for restitution condone sign errors                                |
|       | $v_p = -5.125$                                                            | A1       | correct velocity for <i>P</i> or Q<br>note: $v_Q = -1.325$                          |
|       | $I = 0.3 \times (-5.125) - 0.3 \times (2)$<br>= -2.1375 N s               | M1       | applies impulse equation with their<br>velocities<br>condone sign errors            |
|       | I  = 2.14  to  3  sf                                                      | A1       | correct magnitude                                                                   |
|       |                                                                           | 7        |                                                                                     |

| Q     | Answer                                      | Marks | Comments                         |
|-------|---------------------------------------------|-------|----------------------------------|
| 12(b) | 2.1375 = 0.075 <i>F</i>                     | M1    | uses $I = Ft$ with their impulse |
|       | $F = \frac{2.1375}{0.075} = 29$ N (to 2 sf) | A1    | <b>AWRT</b> 29 N                 |
|       |                                             | 2     |                                  |

| Question 12 Tot | 1 9 |  |
|-----------------|-----|--|
|-----------------|-----|--|