

INTERNATIONAL AS FURTHER MATHEMATICS

FM02

(9665/FM02) Unit P2 - Unit FPSM1 - Pure, Statistics and Mechanics

Mark scheme

January 2020

Version: 1.0 Final

201Xfm02/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

М	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
- <i>x</i> EE	Deduct x marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

MARK SCHEME – INTERNATIONAL AS FURTHER MATHEMATICS – FM02 – JANUARY 2020

Q	Answer	Marks	Comments
1	$hf(x, y) = 0.25 \frac{\sqrt{7} + 4.3}{4.3\sqrt{4.3}}$ $= 0.194741$	M 1	PI
	$y_2 = 4.3 + 0.194741 = 4.494741$	A1	
	$y_3 = 4.494741 + 0.25 \frac{\sqrt{7.25} + 4.494741}{4.494741\sqrt{4.494741}}$	m1	
	= 4.68330	A1ft	ft their y_2 to at least 3 dp
	4.683	A1	CAO
	Total	5	

Q	Answer	Marks	Comments
2(a)	$\begin{vmatrix} 1 & k \\ 3 & 2 \end{vmatrix} = 0$	M 1	
	$2 - 3k = 0$ $k = \frac{2}{3}$	A1	CAO
2(b)	$\mathbf{M} = \mathbf{B}^{-1}\mathbf{B}\mathbf{M} = \mathbf{B}^{-1} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \end{bmatrix}$	B1	Alternative method: B1 for 6 sim. equations (at least 5 correct) (PI) M1 for attempting to solve a pair of their equations for their unknowns A1 for correctly solving a pair of the equations. Then last two marks as for main
	$\mathbf{B}^{-1} = \begin{pmatrix} 1\\ 2-3k \end{pmatrix} \begin{bmatrix} 2 & -k\\ -3 & 1 \end{bmatrix}$	M1 A1ft	method. M1 for $\begin{bmatrix} 2 & -k \\ -3 & 1 \end{bmatrix}$ A1ft division by their B
	$\mathbf{M} = \begin{pmatrix} 1\\ 2-3k \end{pmatrix} \begin{bmatrix} 2 & -k\\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 4 \end{bmatrix}$	М1	For correctly calculating the 2 nd or 3 rd column of $\begin{bmatrix} 2 & 4-k & -2-4k \\ -3 & -5 & 7 \end{bmatrix}$
	$\mathbf{M} = \left(\frac{1}{2-3k}\right) \begin{bmatrix} 2 & 4-k & -2-4k \\ -3 & -5 & 7 \end{bmatrix}$	A1	oe CAO

Total	7	
-------	---	--

Q	Answer	Marks	Comments
---	--------	-------	----------

3(a)	531 405 195 -74	B1	
3(b)	All points correct	B1	
	Line of best fit drawn	B1	
3(c)	X-intercept = 91	M1	In the range [86, 94]
	$x = \sqrt{91}$ (= 9.5)	A1	Square root of their <i>X</i> -intercept in the range [9.3, 9.7]
3(d)	b = 650	B1	their <i>Y</i> -intercept in the range [630, 670] No marks if not consistent with graph
	a = gradient	M 1	PI
	= -7.1	A1	In [-7.5, -6.7]
	Total	8	

Q	Answer	Marks	Comments
	f(-1) = 1 and f(-1.5) = -19/8	M1	
4(a)	Change of sign and f is continuous on the interval so α is in the interval (-1.5, -1).	A1	
4(b)	$f'(x) = 3x^2 - 4x - 3$	B1	PI
	$x_2 = -1.5 - \frac{-\frac{19}{8}}{\frac{39}{4}}$	B1 B1	B1 for numerator in correct formB1 for denominator in correct form
	-1.256	B1	
4(c)(i)	Tangent drawn at $x = -1.5$ to meet <i>x</i> - axis	B1	
4(c)(ii)	P correct	B1	
-(0)(11)	Q correct	B1	
	Total	9	

Q	Answer	Marks	Comments
5(a)	(3,1), (11,3) and (8,2) Drawn correctly, labelled and joined up	B1 B1	
5(b)	$\begin{vmatrix} 3 & -4 \\ 1 & -1 \end{vmatrix} = 1$ Area of <i>OABC</i> = 2	M1	
	Therefore, area of $OABC = 2$ Therefore, area of $OA'B'C'$ = 1×area of $OABC$ = 1×2 = 2 square units	A1	With explanation
			Alt. method: $\begin{vmatrix} 3 & 11 \\ 1 & 3 \end{vmatrix} = -2$ M1 so area = 2 A1 Or use of determinant made of any pair of position vectors of vertices
5(c)	$\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} x \\ mx \end{pmatrix}$	M1	Must have only one unknown
	$3 - 4m = 1$ so $m = \frac{1}{2}$ or $1 - m = m$ so $m = \frac{1}{2}$	E1	
5(d)	$\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} X \\ 3X \end{pmatrix}$	M1	Must have two different unknowns
	3x - 4kx = X $x - kx = 3X$	M1	For two equations in 2 unknowns
	x - kx = 3(3x - 4kx)	A1	For eliminating 1 unknown
	1 - k = 9 - 12k	M 1	
	$k = \frac{8}{11}$	A1	
	Total	11	

Q	Answer	Marks	Comments
6	$G_{x}(t) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} t^{k}$	M1	Applies G _x (t) formula
	$= \sum_{k=0}^{n} \binom{n}{k} (pt)^{k} (1-p)^{n-k}$	M1	Simplifies expression
	$= (1 - p + pt)^n$ (AG)	A1	Complete proof with no errors seen
	Total	3	

Q	Answer	Marks	Comments
7(a)	$E(X^2) = \sum_{x=1}^{n} \frac{x^2}{n} = \frac{1^2 + 2^2 + \dots + n^2}{n}$	M1	Applies formula for E(X ²)
	$= \frac{\frac{1}{6}n(n+1)(2n+1)}{n}$	A1	Applies formula for $\sum n^2$
	$= \frac{(n+1)(2n+1)}{6}$ Var(X) = $\frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^2$	М1	Applies $Var(X) = E(X^2) - (E(X))^2$
	$=\frac{n^2-1}{12}$	A1	Complete proof with no errors seen Needs at least one intermediate line
7(b)(i)	$\frac{n^2 - 1}{12} = 33.25$	M1	Sets up equation using Var(X) = 33.25
	n = 20	A1	
7(b)(ii)	P(D > 18) = 0.1	B1ft	Accept 1/10 oe Follow through their (their n – 18) × 1/20
7(b)(iii)	$(1-0.1)^4 \times 0.1$	M1	$(1 - \text{their P}(D > 18))^4 \times \text{their}$ P(D > 18)
	0.06561	A1	CAO
	Total	9	

Q	Answer	Marks	Comments
8(a)	$Var(aX) = 0.25a^2$	B1	Uses Var(aX) = a ² Var(X)
	Var $((1 - a)Y) = 0.16(1 - a)^2$ or 0.16 - 0.32a + 0.16a ²	B1	Uses $Var((1 - a)Y) =$ (1 - a) ² Var(Y)
	$2\rho\sqrt{Var(aX)Var((1-a)Y)} =$ 2 × 0.25 × 0.5a × 0.4(1 – a) or 0.1a – 0.1a ²	M1	Finds $2\rho \sqrt{\operatorname{Var}(aX)\operatorname{Var}((1-a)Y)}$ Or 2a(1 – a)Cov(X,Y)
	Var(aX + $(1 - a)$ Y) = 0.25a ² + 0.16 - 0.32a + 0.16a ² + 0.1a - 0.1a ² = 0.31a ² - 0.22a + 0.16	A1	Applies $Var(aX + (1 - a)Y)$ = $Var(aX) + Var((1 - a)Y) + 2\rho\sqrt{Var(aX)Var((1 - a)Y)}$ (or uses Or 2a(1 - a)Cov(X,Y) here) and simplifies to given answer
8(b)(i)	$\frac{\mathrm{d(Var)}}{\mathrm{da}} = 0.62\mathrm{a} - 0.22$	B1	Correct differentiation
	0.62a - 0.22 = 0	M1	Sets $\frac{d(Var)}{da} = 0$
	$a = \frac{11}{31}$	A1	CAO 0.35483 is B1M1A0
8(b)(ii)	$\frac{226}{31}$	B1ft	Follow through their a \times 6 + (1 – their a) \times 8 Accept AWRT 7.3
	Total	8	

MARK SCHEME – INTERNATIONAL AS FURTHER MATHEMATICS – FM02 – JANUARY 2020

Q	Answer	Marks	Comments
9	$[a] = [r][\omega]^{2}$ $LT^{-2} = L[\omega]^{2}$ $[\omega]^{2} = T^{-2}$ $[\omega] = T^{-1}$	M1 A1ft A1	ft their dimensions of acceleration (at least two terms)
	Total	3	

Q	Answer	Marks	Comments
10(a)	$e = \frac{5}{8} = 0.625$	B1	
10(b)	$I = 0.2 \times 8 - 0.2 \times (-5)$ = 2.6 Ns	M1 A1	-2.6 is M1A0
10(c)	2.6 = 0.25F $F = \frac{2.6}{0.25} = 10.4$ N	M1 A1	
	Total	5	

Q	Answer	Marks	Comments
11(a)	$\frac{4}{45^{\circ}}, \frac{4}{9}, \frac{1}{9}, \frac{1}{$	M1 M1A1 A1	Showing all details Condone 18° Alt. method $\mathbf{s} = \begin{pmatrix} 2\sqrt{2}t \\ 5000 + 2\sqrt{2}t \end{pmatrix}$ M1 $\mathbf{p} = \begin{pmatrix} 9(\sin \alpha^{\circ})t \\ 9(\cos \alpha^{\circ})t \end{pmatrix}$ M1 (condone switched) $\sin \alpha^{\circ} = \frac{2\sqrt{2}}{9}$ A1 $\alpha = 018$ A1
11(b)	Time = $\frac{5000}{9\cos\alpha - 4\sin 45^{\circ}}$ Time = 875 seconds	M1A1 A1	Use of 5 instead of 5000 is M1A0 $\frac{v}{\sin 26.7^{\circ}} = \frac{9}{\sin 135^{\circ}}$ and $t = \frac{5000}{v}$ is M1A1 oe Accept [871, 879]
	Total	7	

MARK SCHEME – INTERNATIONAL AS FURTHER MATHEMATICS – FM02 – JANUARY 2020

Q	Answer	Marks	Comments
12	For A: $-9 = 2 \times v_A - 2 \times 5$ $v_A = 0.5$	M1 A1	
	For <i>B</i> : $9 = 3 \times v_B - 3 \times (-2)$	M 1	Or for a correct conservation of momentum equation with one unknown
	$v_B = 1$	A1	
	$0.5 - 1 = -e(5 - (-2))$ $e = \frac{-0.5}{-7} = \frac{1}{14}$	A1	
	Total	5	