

INTERNATIONAL AS FURTHER MATHEMATICS FM01

(9665/FM01) Unit FP1 Pure Mathematics

Mark scheme

January 2020

Version: 1.0 Final Mark Scheme

201Xfm01/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method				
	m	Mark is dependent on one or more M marks and is for method				
	Α	Mark is dependent on M or m marks and is for accuracy				
	В	Mark is independent of M or m marks and is for method and accuracy				
	E	Mark is for explanation				
\checkmark	or ft	Follow through from previous incorrect result				
	CAO	Correct answer only				
	CSO	Correct solution only				
	AWFW	Anything which falls within				
	AWRT	Anything which rounds to				
	ACF	Any correct form				
	AG	Answer given				
	SC	Special case				
	oe	Or equivalent				
	A2, 1	2 or 1 (or 0) accuracy marks				
	<i>–x</i> EE	Deduct <i>x</i> marks for each error				
	NMS	No method shown				
	PI	Possibly implied				
	SCA	Substantially correct approach				
	sf	Significant figure(s)				
	dp	Decimal place(s)				

Q	Answer	Marks	Comments
	· · · · · · · · · · · · · · · · · · ·		
1	$z^* = a - bi$	B1	PI
	4a + 4bi - i(a - bi) = 7 + 3i 4a - b + 4bi - ia = 7 + 3i	M1	For either line
	4a - b = 7 $4b - a = 3$	M1	For two sim. eqns. each with at least three non-zero terms
	4a - b = 7 -4a + 16b = 12		
	$15b = 19$ so $b = \frac{19}{15}$	A1	For a or b
	$a = 4b - 3$ so $a = \frac{31}{15}$	M1	
	$z = \frac{31}{15} + \frac{19}{15}i$	A1	Must be seen in this form
	Total	6	

Q	Answer	Marks	Comments
	· · · · · · · · · · · · · · · · · · ·		
2(a)	$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$	B1	oe
	Use of $2n\pi$ and use of second solution to $\cos x = -\frac{\sqrt{3}}{2}$	M1	(or $n\pi$) at any stage
	Going from $\left(2x - \frac{\pi}{4}\right)$ to x	m1	including division of all terms by 2
	$x = n\pi + \frac{13\pi}{24}$ or $x = n\pi - \frac{7\pi}{24}$	A1 A1	oe
2(b)	Sum of admissible solutions = $2k\pi + \frac{13\pi}{24} + (2k+1)\pi - \frac{7\pi}{24}$ $+(2k+1)\pi + \frac{13\pi}{24} + (2k+2)\pi - \frac{7\pi}{24}$	М1	For adding at least two terms consistent with their answer to part (a)
	$= (8k+4)\pi + \frac{\pi}{2}$	A1	
	Mean = $\left\{ (8k+4)\pi + \frac{\pi}{2} \right\} \div 4$ = $2k\pi + \frac{9\pi}{8}$ as required	A1	
	Total	8	

Q	Answer	Marks	Comments
3(a)	Gradient = $\frac{5+h+\frac{1}{5+h}-(5+\frac{1}{5})}{5+h-5}$	M1	
	$=\frac{h+\frac{1}{5+h}-\frac{1}{5}}{h}$	M 1	
	$=\frac{h+\frac{-h}{5(5+h)}}{h}$	M1	
	$=1-\frac{1}{5(5+h)}$	A1	
- // >	Gradient of curve		
3(b)	$= \lim_{h \to 0} \left[1 - \frac{1}{5(5+h)} \right]$	B1	Limit of their expression from part (a)
	$= 1 - \frac{1}{25} = \frac{24}{25}$	B1	
	Total	6	

Q	Answer	Marks	Comments
4(a)	$\alpha + \beta = \frac{7}{2}$	B1	
	$\alpha\beta = 5$	B1	
	Sum of roots		
4(b)	$= \alpha^3 + \beta^3$	M1	PI
	$= (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$		
	$= (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$	M1	PI
	$= \left(\frac{7}{2}\right)^3 - 3 \times 5 \times \frac{7}{2}$ $= -\frac{77}{2}$	A1	
	8 Product of roots		
	$= (\alpha\beta)^3$	M1	PI
	= 125	A1	
	$8r^2 \pm 77r \pm 1000 = 0$	Δ1	oe (integer coefficients)
	$0\lambda + 77\lambda + 1000 = 0$		
	Total	8	

Q	Answer	Marks	Comments
5	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	M 1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{4\pi r^2} \times 50$	M1	
	When $V = \frac{500\pi}{3}, r = 5$	M1	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{4\pi(5^2)} \times 50$	M1	
	$=\frac{1}{2\pi}$	A1	With all steps clearly shown in a logical sequence
	Total	6	

Q	Answer	Marks	Comments		
6(a)	$x = 1 \qquad x = 2$ $y = 0$	B1 B1	For both		
6(b)	Let $f(x) = k$ $\frac{x-3}{(x-2)(x-1)} = k$	M1			
	k(x-2)(x-1) = x - 3 $kx^{2} - (3k+1)x + 2k + 3 = 0$	A1			
	For real roots $(3k + 1)^2 - 4k(2k + 3) \ge 0$ $k^2 - 6k + 1 \ge 0$	M1			
	$k^{2} - 6k + 1 = 0$ has roots $k = 3 \pm 2\sqrt{2}$	A1			
	$f(x) \le 3 - 2\sqrt{2}$ or $f(x) \ge 3 + 2\sqrt{2}$	A1A1	A1A0 if < and/or > used		
6(c)	Three branches with correct shape	B1			
	Asymptotes shown	B1	PI for horizontal asymptote		
	Both values at axis intercepts shown	B1			
	Both <i>y</i> -coordinates of stationary points shown	B1F	FT their answers to part (b)		
	$3 + 2\sqrt{2}$ $3 - 2\sqrt{2}$ -1.5 1 2 3 3 3 3 3 3 3 3 3 3				
	Total	12			

Q	Answer	Marks	Comments
7(a)	$(x + 1)^{4} - (x - 1)^{4} =$ $x^{4} + 4x^{3} + 6x^{2} + 4x + 1$	M1	
(-)	$-(x^4 - 4x^3 + 6x^2 - 4x + 1)$		
	$=8(x^3+x)$	A1	
7(b)	$8\sum_{r=1}^{n} (r^{3} + r) = \sum_{r=1}^{n} \{(r+1)^{4} - (r-1)^{4}\}$	M1	Must use method of differences to gain any marks
	$= \frac{2^4}{10^4} - \frac{1^4}{14}$	M1	
	$+4^{4}-2^{4}$		
	+…		
	$+(n-1)^4 - (n-3)^4$		
	$+ n^{+} - \frac{(n-2)^{+}}{(n-2)^{+}}$		Must have at least the first three terms
	$+(n+1)^4 - (n-1)^4$	M1	and last two terms (or first two and
	$= n^4 + (n+1)^4 - 1$	A1	
	$\therefore \sum_{r=1}^{n} (r^3 + r) = \frac{1}{8} (n^4 + (n+1)^4 - 1)$	A1	
	as required		
7(c)	$\sum_{r=1}^{n} (r^2 + r)$ is an even integer.	E1	
	$\therefore \frac{1}{8}(n^4 + (n+1)^4 - 1)$ is an even integer		
	and $n^4 + (n+1)^4 - 1$ is a multiple of 16	E1	Second E1 can only be earned if the first E1 is awarded
	Total	9	

Q	Answer	Marks	Comments
	Circle with centre (-3, -4)	B1	
8(a)	Passing through origin	B1	
	Line with positive gradient touching circle	B1	
	Starts at (0, -10)	B1	condone extra bit in 3 rd quadrant
8(b)	Given points A(0, -10), G(-3,-4), F(0,-4) and D where L touches C: $AG^2 = 6^2 + 3^2$ so $AG = 3\sqrt{5}$	B1	
	$\widehat{GAD} = \sin^{-1}\frac{5}{3\sqrt{5}}$	M1	
	= 0.84107	A1	
	$\widehat{GAF} = \tan^{-1}\frac{1}{2} = 0.46365$	B1	
	$\alpha = \frac{\pi}{2} + 0.46365 - 0.84107$	M1	
	= 1.19	A1	Must be 3 sig. fig.
= 1.19 A1 Must be 3 sig. fig. A1 Must be 3 sig. fig. fig. fig. fig. fig. fig. fig. f			
	Total	10	

Q	Answer	Marks	Comments
9(a)	$xy = 8 \Longrightarrow x = \frac{8}{y}$ $y^{2} = 8\left(\frac{8}{y}\right) = \frac{64}{y}$	M1	
	y = 4, x = 2 so (2, 4)	A1	And no other solution
9(b)	H has branches in 1 st and 3 rd quadrants	B1	And roughly correct shape
	P passes through origin and is symmetrical about the positive x-axis	B1	
9(c)	y = mx + c and $xy = 8$ so $x(mx + c) = 8$	M1	Solves simultaneously
	$mx^2 + cx - 8 = 0$	A1	
	For tangency, $\Delta = 0$ so $c^2 - 4(m)(-8) = 0$	M1	This must be stated in some form
	$c^2 + 32m = 0$ as required	A1	
9(d)	For P: $y = mx + c$ and $y^2 = 8x$ so $(mx + c)^2 = 8x$ $m^2x^2 + (2mc - 8)x + c^2 = 0$	M1 A1	
	$\Delta = 0 \text{ so } (2mc - 8)^2 - 4m^2c^2 = 0$	М1	
	Giving $m = \frac{2}{c}$	A1	
	Solving $m = \frac{2}{c}$ and $c^2 + 32m = 0$	М1	
	simultaneously, $c = -4$ or $m = -\frac{1}{2}$	A1	
	so $y = -\frac{1}{2}x - 4$	A1	
	Total	15	