

INTERNATIONAL AS MATHEMATICS

9665

FM02 Further Pure Mathematics Unit 2

Mark scheme

January 2019

Version: 1.0 Final

JAN199665FM0101/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

Q	Answer	Mark	Comments
	$hf(x,y) = \frac{0.1}{1.2^2 + 0.8^2}$	M1	PI
	= 0.048077	A1	
	$y_2 = 0.8 + 0.048077 = 0.848077$	m1	0.8+ their value of $hf(x, y)$
1	$y_3 = 0.848077 + \frac{0.1}{1.3^2 + 0.848077^2}$	m1	
	(= 0.88958)		
	0.890	A1	CAO – candidate's final answer
	Total	5	

Q	Answer	Mark	Comments
		1	
	[f(3) =] –9 and [f(4) =] 20	B1	PI
	$x_1 = 3 + \frac{9}{20 + 9}$	M1	PI
2	$x_1 = \frac{96}{29}$	A1	
	$f(x_1)[=-2.2067] < 0$	B1	
	$f(x_1) < 0 \text{ so } \alpha > \frac{96}{29} \text{ and } \frac{96}{29} < \alpha < 4$	E1	
	Total	5	

MARK SCHEME – INTERNATIONAL AS MATHEMATICS – FM02 – JANUARY 2019

	Answer	Mark	Comments
		I	
	$y = ax^n \Rightarrow \log_{10} y = \log_{10} ax^n$ $\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	Take logs and apply one log law correctly PI
3(a)	$\log_{10} y = \log_{10} a + n \log_{10} x$	m1	Apply a further log law correctly.
	$Y = \log_{10} a + nX$ (which is a linear relationship between Y and X.)	A1	Correct eqn. with base 10 (or lg or later evidence of use of base 10 if log without base here)

2(b)	0.602, 0.778, 0.903	B1	At least 2 sig fig
3(b)	1.96, 2.37, 2.66	B1	At least 2 sig fig

	Their four points plotted correctly	B1ft	
3(c)	Straight line drawn through their points	B1ft	

3(d)	$a = 10^{0.58}$	M1	10 to the power of their intercept
	a = 3.8	A1	[3.3, 4.2]
	Gradient found	M1	
	n = 2.3	A1	[2.1, 2.5]
	Total	11	

Q	Answer	Mark	Comments
	r2 01	D4	
4(a)	$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$	BI	
4(b)	W in correct place	B1	Two vertices correct B1B0
Ч(б)	(-3, -3), (-1, -3) and (-3, -6)	B1	
	Method 1		
	det(P) = 3	B1ft	
	det (Q) = -1	B1	PI
4(c)	det (QP) = -3	B1	
	Alternative method		
	$\mathbf{Q} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	B1	
	$\mathbf{QP} = \begin{bmatrix} 0 & -1 \\ -3 & 0 \end{bmatrix}$	M1	
	det (QP) = -3	A1	
	Total	6	

Q	Answer	Mark	Comments	
	Method 1			
	det(B) = 2	M1		
	$\mathbf{B}^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$	A1		
	$\mathbf{A} = \mathbf{C}\mathbf{B}^{-1}$	M1		
	$\mathbf{A} = \begin{bmatrix} 1 & -3 \\ 2 & -4 \end{bmatrix}$	A1		
	Alternative method			
5(a)	Let $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then	M1		
	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 6 \end{bmatrix}$			
	-a-b=2	M1	For four equations	
	a-b=4			
	-c - d = 2 $c - d = 6$			
	a=1 and $b=-3$	M1	For solving one pair of equations	
	or $c = 2$ and $d = -4$			
	$\mathbf{A} = \begin{bmatrix} 1 & -3 \\ 2 & -4 \end{bmatrix}$	A1		

	$\mathbf{B}^2 = \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$	M1	
5(b)	$\mathbf{B}^4 = (\mathbf{B}^2)^2 = \begin{bmatrix} -4 & 0\\ 0 & -4 \end{bmatrix}$	M1 A1	
	$\mathbf{B^4} = k\mathbf{I}$ where $k = -4$	E1	

5(c)(i) Scale factor = $\sqrt{2}$	B1	
-----------------------------------	----	--

	– 135°	B1	Or 135°clockwise oe.
5(c)(ii)			Do not accept just 135°

	$\mathbf{B^{21}} = (\mathbf{B}^4)^5 \times \mathbf{B}$	M1	
5(d)	$= (-4)^5 \times \mathbf{B} \text{ or } -1024\mathbf{B}$	M1	
	$\mathbf{B^{21}} = \begin{bmatrix} 1024 & -1024 \\ 1024 & 1024 \end{bmatrix}$	A1	
	Total	13	

Q	Answer	Mark	Comments
6(a)	$\frac{2}{3}$	B1	

6(b)	$G_{X}(t) = \sum_{n=1}^{3} t^{n} \left(\frac{1}{3}\right)$	M1	Applies formula for $G_X(t)$
0(0)	$=\frac{1}{3}(t+t^2+t^3)$ oe	A1	Ignore subsequent incorrect working

	Alternative Method 1				
	$G_{X+Y}(t) = \frac{1}{3} (t + t^2 + t^3)(0.6 + 0.4t)$	M1	Multiplies their $G_X(t)$ and $G_Y(t)$		
	$\frac{1}{3}$ t × 0.6	M1	Multiplies out the required terms to find the coefficient of t Implied by correct answer		
	= 0.2	A1	Accept 1/5 oe		
6(c)	Alternative method 2				
	Y Bernoulli, $p = 0.4$ or Y~B(1, 0.4)	M1	Identifies distribution of Y		
	P(X + Y = 1) means X = 1 and Y = 0 or P(X + Y = 1) = P(X = 1)P(Y = 0)	M1	Identifies possible combinations of X and Y		
	$=\frac{1}{3}(1-0.4)=0.2$	A1	Accept 1/5 oe		
	Total	6			

Q	Answer	Mark	Comments
7(a)	$(1-0.6)^3 = 0.064$	B1	Accept 8/125 oe
	$P(W H) = \frac{P(H W)P(W)}{P(H)}$ $= \frac{0.01 \times 0.7}{0.064}$	M1	Applies Bayes Theorem to find P(W H)
	$=\frac{7}{64}$ or AWRT 0.109	A1ft	ft their P(H) from (a) provided 0 < P(H) < 1
	P(H' ∩ W) = P(W) – P(H ∩ W) P(H')P(W H') = P(W) – P(H)P(W H) (1 – 0.064)P(W H') = 0.7 – 0.064 × $\frac{7}{64}$	M1	Method to find P(W H')
7(b)	P(W H') = $\frac{77}{104}$ or 0.740 AWRT	A1ft	ft their P(H) from (a) provided 0 < P(H) < 1
	$\begin{array}{c} & & & & \\ 0.064 & & H & & \\ 0.936 & & H' & & \\ & & & \frac{77}{64} & W' \\ & & & \frac{77}{104} & W \\ & & & \frac{27}{104} & W' \end{array}$	A1ft	ft their probabilities Need to score at least one M1
	Total	6	

Q	Answer	Mark	Comments
	$E(2P^2 - 5) = 2E(P^2) - 5$	M1	
	or		One correct formula seen
	$E(PQ) = 2E(P^3) - 5E(P)$		
	$E(2P^2 - 5) = 2 \times 5 - 5 = 5$	A1	One correct value
	or		Accept 96/5 oe for 19.2
	$E(PQ) = 2 \times 14.6 - 5 \times 2 = 19.2$		Can be implied by correct final answer
8(a)	$E(2P^2 - 5) = 2 \times 5 - 5 = 5$	A1	Both correct values
	and		Accept 96/5 oe for 19.2
	E(PQ) = 2 × 14.6 – 5 × 2 = 19.2		Can be implied by correct final answer
	Cov (P, Q) = E(PQ) - E(P)E(Q)	M1	
	= 19.2 – 2 × 5		Applies formula for Cov (P, Q)
	= 9.2	A1	Accept 46/5 oe

	Var (P) = $E(P^2) - (E(P))^2$ = 5 - 2 ² = 1	B1	Finds Var (P) Can be implied by correct final answer
8(b)	Var (P + Q) = Var (P) + Var (Q) + 2 Cov (P, Q) = 1 + 8 + 2 × 9.2	M1	Applies formula for Var (P + Q)
	= 27.4	A1	Accept 137/5 oe
	Total	8	

Q	Answer	Mark	Comments
9	$MLT^{-2} = [k]L^{\frac{3}{2}}T^{-\frac{3}{2}}$ $[k] = ML^{-\frac{1}{2}}T^{-\frac{1}{2}}$	M1 A1	
	Total	2	

Q	Answer	Mark	Comments
10(a)	$I = \frac{1}{2} \times 2500 \times 10$ $= 12500 \text{ Ns}$	B1	
10(b)	$-12500 = 2000U - 2000 \times 20$ $U = \frac{2000 \times 20 - 12500}{2000}$ $U = 13.75$	M1 A1 A1	M1: Equation with correct terms but any signs. A1: Correct equation. A1: Correct <i>U</i> .
	Total	4	

Q	Answer	Mark	Comments
	$5mU + 4mU = mv_A + 4mv_B$	M1	
	$9U = v_A + 4v_B$	A1	
	$v_A - v_B = -e(5U - U)$	M1	
11(a)	$v_A - v_B = -4eU$	A1	
	$9U = v_B - 4eU + 4v_B$		
	$v_B = \frac{U(9+4e)}{5}$	A1	
	I	1	I

11(b)	$v_{A} = \frac{U(9+4e)}{5} - 4eU$ $v_{A} = \frac{U(9-16e)}{5}$	B1 M1	
	$9 - 16e < 0$ $e > \frac{9}{16}$	A1	
	Total	8	

