

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number 73486
Publications Code WFM01_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - \circ the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- · dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the guestion paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(NB specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

- Factorisation
 - $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...
 - $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...
- Formula
 - Attempt to use the correct formula (with values for *a*, *b* and *c*).
- Completing the square
 - o Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

- Differentiation
 - o Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)
- Integration
 - o Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

- Method mark for quoting a correct formula and attempting to use it, even
 if there are small errors in the substitution of values.
- Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2} \text{ or } \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} 2r^{2}$	Correct split with 2 summations. Could be implied by correct work. Condone missing or incorrect summation limits.	B1
	$= \frac{1}{4}n^{2}(n+1)^{2} + 2 \times \frac{1}{6}n(n+1)(2n+1)$	Attempts to use both standard results and obtains an expression of the form $pn^2(n+1)^2 + qn(n+1)(2n+1)$ $p, q \neq 0$ Could be implied by immediate expansion	M1
	$= \frac{1}{12} n(n+1) [3n(n+1)+4(2n+1)]$ $= \frac{1}{12} n(n+1) (3n^2+11n+4)$	dM1: Attempts factorisation to obtain $\frac{1}{12}n(n+1)\left(an^2+bn+c\right)$ $a,b,c\neq 0$. Condone poor algebra. Could follow cubic or quartic. Allow a consistent $a=,b=,c=$ $c=$ if quadratic never seen simplified Requires previous M mark. A1: Correct expression or $a=3, b=11, c=4$ Allow e.g., $\frac{1}{12}n(n+1)$ written as $\frac{n}{12}(n+1)$	d M1 A1
	Note: $n(n+1)(3n^2+11n+4)=$	$3n^4 + 14n^3 + 15n^2 + 4n$	Total 4

Question Number	Scheme	Notes	Marks
2	$2x^4 - 8x^3 + 29x^2 - 12x + 3$	39 = 0, x = 2 + 3i	
	Condone work in e.g.	., z throughout	
(a)	2–3i	Correct conjugate	B1
			(1)
(b)	$(x-(2-3i))(x-(2+3i)) = \{x^2-4x+13\}$ or $(x-2+3i)(x-2-3i)$ or $sum = 4, \text{ product} = 13$ $\Rightarrow x^2 \pm 4x \pm 13 \text{ or } x^2 \pm 13x \pm 4$ or $x^2 - (2+3i+2-3i)x + (2+3i)(2-3i)$ $\Rightarrow \{x^2-4x+13\}$	Attempts to multiply the two correct factors to obtain a 3 term quadratic with real coefficients. Could use $(x-2)^2 = (\pm 3i)^2$ or $x^2 - 2ax + a^2 + b^2$ with $a = 2$, $b = \pm 3$ Or uses the correct sum and product of the roots to obtain an expression of the form shown (must be some minimal working – but if just a quadratic is given the next 2 marks are available) or $x^2 - (\alpha + \beta)x + \alpha\beta$ to obtain a 3 term	M1
	$2x^{4} - 8x^{3} + 29x^{2} - 12x + 39 \Rightarrow (x^{2} - 4x + 13)(2x^{2} + 3)$	quadratic with real coefficients. Uses their 2 or 3 term quadratic factor with real coefficients to obtain a second 2 or 3 term quadratic of the form $2x^2 +$ by long division, equating coefficients or inspection. Ignore any remainder from long division. Can follow M0	M1
	$2x^{2} + 3(=0) \Rightarrow$ $x = \pm \frac{\sqrt{6}}{2}i \text{ or } \pm i\sqrt{\frac{3}{2}} \text{ or } \pm \frac{\sqrt{3}}{\sqrt{2}}i \text{ or } \sqrt{1.5}i$ $\sqrt{1.5}i \text{ is } M0$ $1.2247i \text{ is } M1 \text{ A0}$	dM1: Solves their second quadratic factor = 0. If 2 term must get one correct non-zero root. (Usual rules if 3TQ and one correct root if no working) Could be inexact. Requires previous method mark. A1: Both correct exact roots with "i" Requires all previous marks.	d M1 A1
	Solving by calculator, sometimes followed b	y attempts to reconstruct factors. e.g.,	
	$f(x) = (x^2 - 4x + 13)(x^2 + \frac{3}{2})$ is first M1 only	and working for the 3TQ must be seen	(4)
(c)	x x x x	Allow ft on their answers to (b) if they are of the form $\pm ki$ or $\pm k\sqrt{-1}$, $k \neq 0$ regardless of how they were obtained 1st B1: One of the two pairs of roots in correct positions 2nd B1: Both pairs of roots in correct positions and correct relative to each other for their k Allow any suitable indication of the roots such as vectors. Ignore all labelling and scaling but each pair should be reasonably symmetric in x -axis for any marks (for each pair -distance of one to x -axis not less than $\frac{1}{2}$ of the other)	B1 B1 (ft on (b))
		, or the outer,	1
		2 /	(2)

Question	Scheme	Notes	Marks
Number 3(a)	. ()		
3(4)	$y = 9x^{-1} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -9x^{-2} \left\{ = -\frac{9}{(3t)^2} \right\}$	Any correct expression for $\frac{dy}{dx}$	
	or $xy = 9 \Rightarrow x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left\{ = -\frac{\frac{3}{t}}{3t} \right\}$	but allow e.g., $\frac{dx}{dy} = -9y^{-2}$ Calculus must be seen so there is no	B1
	or $x = 3t, y = 3t^{-1} \Rightarrow \frac{dx}{dt} = 3, \frac{dy}{dt} = -3t^{-2} \Rightarrow \frac{dy}{dx} = \frac{-3t^{-2}}{3}$	credit for just a statement e.g., $m_T = -\frac{1}{t^2}$	
	e.g., $m_N = \frac{(3t)^2}{9}$ or $\frac{3t}{\frac{3}{t}}$ or $\frac{3}{3t^{-2}}$ $\{=t^2\}$	Uses the perpendicular gradient rule to obtain the gradient of the normal in terms of t correct for their m_T Implied by correct use of $-\frac{dx}{dy}$	M1
	$y - \frac{3}{t} = t^2 \left(x - 3t \right) \text{ or } \frac{3}{t} = t^2 \left(3t \right) + c \Rightarrow c = \dots$ $\left\{ c = \frac{3}{t} - 3t^3 \right\}$	Applies straight line method correctly with their normal (changed) gradient in terms of t . If using $y = mx + c$ coordinates must be correctly placed and $c =$ reached	M1
	$ty - t^3x = 3 - 3t^4$ Intermediate step not required. Allow recovery from a slip.	Correct equation or $f(t)$. Must be seen in (a). Accept equivalents for $f(t)$ e.g., $3(1-t^4), -3(t^4-1)$	A1
	Allow work with $xy = c^2$ but the final No calculus scores a maximum of 0111 if	•	(4)
(b)	$xy = 9$, $2y - 8x = 3 - 3 \times 16$	Uses $t = 2$ in their $ty - t^3x = f(t) \neq 0$	
	e.g., $\Rightarrow y = 4x - \frac{45}{2}$ or $x = \frac{45}{8} + \frac{y}{4}$ $\Rightarrow x \left(4x - \frac{45}{2}\right) = 9$ or $y \left(\frac{45}{8} + \frac{y}{4}\right) = 9$	and the equation of H to obtain an unsimplified three term quadratic equation in x or y (no variables in denominators). Only allow $f(t) = \frac{9}{t}$ if stated first	M1
	$8x^{2} - 45x - 18 = 0 \text{ or } 2y^{2} + 45y - 72 = 0$ $\{ \Rightarrow (8x+3)(x-6) = 0 \text{ or } (2y-3)(y+24) = 0 \}$ $\Rightarrow x = \dots \ \{ -\frac{3}{8}, 6 \} \text{ or } y = \dots \ \{ \frac{3}{2}, -24 \}$	Solves their 3TQ to find a value for x or y apply usual rules. One root correct if no working. Can award for P provided it has come from quadratic. Requires previous method mark.	d M1
	$\left(-\frac{3}{8}, -24\right)$ or $\left(-0.375, -24\right)$	Correct exact coordinates in simplest form from correct work. Allow $x =, y =$ Ignore $\left(6, \frac{3}{2}\right)$ but A0 for any other point shown or incorrect x or y value.	A1
	Solving in terms of t: M1: \Rightarrow Unsimplified 3' M1: Solves e.g, $x = \frac{-\frac{3}{t} + 3t^3 \pm \sqrt{\left(\frac{3}{t} - 3t^3\right)^2 + 36t^2}}{2t^2}$	TQ e.g., $t^2 x^2 + \left(\frac{3}{t} - 3t^3\right) x - 9 = 0$ M1	(3)
	Correct final answer with no incorrect wo		Total 7

Question Number	Scheme	Notes	Marks
4	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$	$\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	
(i)	$\det \mathbf{A} = -3k - 8(-3) \left\{ = -3k + 24 \right\}$ Could be implied	Attempts det A and obtains $\pm 3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$	M1
	-3k + 24 = 3 or $-3k + 24 = -3\Rightarrow k =May see (-3k + 24)^2 = +9 \Rightarrow 9k^2 - 144k + 567 = 0 \Rightarrow$	Equates their det A of form $ak + b$ a , $b \ne 0$ to 3 or -3 or equivalent work and solves for k (usual rules if quadratic and must use $+9$)	M1
	k = 7, $k = 1$ st A1: Either correct value of k from correct values k from correct values of k from correct values k fr	ect work. Allow e.g., $\frac{-21}{-3}$ or $\frac{-27}{3}$	A1 A1 (4)
(ii)	$\det \mathbf{B} = 1 \times 3a - (-4) \times 2 \ \{ = 3a + 8 \}$	Correct unsimplified expression for det B . Could be implied	B1
	$\mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$	Correct B ⁻¹ with their det B . Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.	M1
	$\mathbf{C} = \mathbf{B}^{-1}\mathbf{B}\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} = \dots$ Access to this mark is allowed if there is no determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$	Multiplies BC by their B ⁻¹ (changed – and not just by incorporation of their determinant) the correct way round. Expect four correct elements for their matrices if the method is unclear. The incorrect order scores M0 even if the	M1
	used $\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $\left(a \neq -\frac{8}{3}\right)$	correct result is obtained. Correct C or equivalent with like terms collected and single fractions if necessary. e.g., $ \left(\frac{10}{3a+8} \frac{31}{3a+8} \frac{11}{3a+8} \right) $ $ \frac{a-4}{3a+8} \frac{2(2a-5)}{3a+8} \frac{2(a-1)}{3a+8} $	A1
			(4)
Alt Sim. equations	$ \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ap - 1 \\ 2p + 1 \end{pmatrix} $ Multiplies in the correct order to obtain		B1
oquus viis	$(3a+8) p = 10 \qquad (3a+8)q = 31 \qquad (3a+8)a$ $p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{1}{3a}$ $s = \frac{1}{3}\left(1 - \frac{20}{3a+8}\right) t = \frac{1}{3}\left(4 - \frac{62}{3a+8}\right) u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right) u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right) u = \frac{2a}{3a}$ $M1: \text{ Solves their equations to find expressions in terms of M1: Finds expressions in terms of A1: Correct matrix – like terms columns.}$	$\frac{1}{1+8}$ $\frac{22}{3a+8}$ $\Rightarrow \begin{pmatrix} \frac{10}{3a+8} & \frac{31}{3a+8} & \frac{11}{3a+8} \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{pmatrix}$ $\frac{-2}{1+8}$ ons in terms of a for three elements of a for all six elements	M1 M1 A1

Question Number	Scheme	Notes	Marks
5	Solutions that rely entirely on solving the equation are generally unlikely to score but there may be attempts which include some of the work below which can receive appropriate credit.		
(a)	$\alpha + \beta = 6$ $\alpha\beta = 3$	Correct sum and product. Could be implied. Allow $\frac{6}{1}$ and $\frac{3}{1}$	B1
	$(\alpha^2+1)(\beta^2+1) = \alpha^2\beta^2 + \alpha^2 + \beta^2 + 1$	Multiplies $(\alpha^2 + 1)(\beta^2 + 1)$ to obtain 3 or 4 terms with 3 correct. Do not condone $\alpha\beta^2$ for $(\alpha\beta)^2$ unless implied later	M1
	$=\alpha^2\beta^2 + (\alpha + \beta)^2 - 2\alpha\beta + 1$	Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$\left\{ = 3^2 + 6^2 - 2 \times 3 + 1 \right\}$ $= 40$	Correct answer from correct work. Use of e.g., $\alpha + \beta = -6$ is A0	A1
(b)	(2) (2)		(4)
(b)	Allow use of their $(\alpha^2 + 1)(\beta^2 + 1)$ which could		
	Numerator must b	Any correct expression with their	
	$\frac{\alpha}{(\alpha^2+1)} + \frac{\beta}{(\beta^2+1)} = \frac{\alpha(\beta^2+1) + \beta(\alpha^2+1)}{"(\alpha^2+1)(\beta^2+1)"}$	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum as	B1
	$(\alpha +1) (\beta +1) (\alpha +1)(\beta +1)$	a single fraction (or two fractions both with the common denominator)	
	$= \frac{\alpha\beta(\beta+\alpha) + (\alpha+\beta)}{"(\alpha^2+1)(\beta^2+1)"} = \frac{"3"\times"6"+"6"}{"40"} = \dots$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum to obtain a correct numerical expression with their denominator, $\alpha + \beta$ & $\alpha\beta$	M1
		and achieves a value. Uses a correct expression with their	
	$\frac{\alpha\beta}{"(\alpha^2+1)(\beta^2+1)"} = \frac{"3"}{"40"}$	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new product to obtain a correct value with their denominator and $\alpha\beta$	M1
	new sum = $\frac{24}{40} \left\{ = \frac{3}{5} \right\}$ or new product = $\frac{3}{40}$	One value for new sum or new product correct. Any equivalent fractions. Not ft. Requires appropriate previous M mark.	A1
	$x^2 - \frac{24}{40}x + \frac{3}{40} \{=0\}$	Correctly uses $x^2 - (\text{sum of roots})x + (\text{product of roots})$ or equivalent work with their new sum and product. Condone use of a different variable. Allow appropriate values for p , q and r	M1
	$40x^2 - 24x + 3 = 0$	Any correct equation with integer coefficients and "= 0". Condone use of a different variable. Allow e.g., $p = 40$, $q = -24$, $r = 3$. Requires all marks.	A1
	Note that although $(a^2 \cdot 1)(a^2 \cdot 1)$		(6)
	Note that although $(\alpha^2 + 1)(\beta^2 + 1)$ may be attected credit for work in (a) that is		Total 10

Question Number	Scheme	Notes	Marks
6(a)	$ z_1 + z_2 $ $\{ = 3 + 2i + 2 + 3i = 5 + 5i \} = \sqrt{5^2 + 5^2}$	Attempts the sum (allow one slip) and uses Pythagoras correctly	M1
	$\sqrt{50}$ or $5\sqrt{2}$	Either correct exact answer	A1
	Answer only is no marks but working can l	be minimal e.g., $ 5+5i = 5\sqrt{2}$	(2)
(b)	$\frac{z_2 z_3}{z_1} = \frac{(2+3i)(a+bi)}{(3+2i)} = \frac{(2+3i)(a+bi)}{(3+2i)} \times \frac{(3-2i)}{(3-2i)}$ or $\frac{z_2}{z_1} = \frac{2+3i}{3+2i} \times \frac{3-2i}{3-2i} \text{ or } \frac{z_3}{z_1} = \frac{a+bi}{3+2i} \times \frac{3-2i}{3-2i}$	Substitutes complex numbers and correct multiplier to rationalise the denominator seen or implied. See note below Could use $\times \frac{-3+2i}{-3+2i}$	M1
	(3+2i)(3-2i)=13	13 <u>obtained from</u> $(3+2i)(3-2i)$ Could be implied.	B1
	$\frac{z_2 z_3}{z_1} = \frac{12a - 5b}{13} + \frac{5a + 12b}{13}i$ or $\frac{1}{13}(12a - 5b) + \frac{i}{13}(5a + 12b)$ or $\frac{12}{13}a - \frac{5}{13}b + i\left(\frac{5}{13}a + \frac{12}{13}b\right)$ etc. Condone $\frac{(12a - 5b) + (5a + 12b)i}{12}$	dM1: Attempts to simplify the numerator and collects terms to obtain $pa + qb + rai + sbi$ with at least three of p , q , r and s non-zero. Requires previous M mark. A1: Correct answer in any form with a single "i". Correct bracketing where needed. Allow $x =, y =$	d M1 A1
	Note: The following marks are accessible if complex not z ₂ as denominator max 1010, z ₃ as		(4)
(c)	$\frac{12a - 5b}{13} = \frac{4}{13}, \frac{5a + 12b}{13} = \frac{58}{13} \implies a = \dots, b = \dots$	Equates their x to $\frac{4}{13}$ and their y to $\frac{58}{13}$ to obtain 2 linear equations in both a and b and solves to obtain values for both a and b .	M1
	No need to check values but must be some wor " $\frac{12a-5b}{13} = \frac{4}{13}$, $\frac{5a+12b}{13} = \frac{58}{13}$ $12a-5b=4$, 5 Values can immediately follow if equations are put the same magni	a + 12b = 58 $a = 2$, $b = 4$ " is M0A0 produced with coefficients of a or b of	WII
	a=2 and $b=4$	Correct values for <i>a</i> and <i>b</i> from correct equations with working.	A1
	SC: Allow access to both marks for the exact $a = -\frac{242}{169}$ and $b = -\frac{242}{169}$	$\frac{716}{169} \text{ from using } w = \frac{z_1 z_3}{z_2} = \frac{12a + 5b}{13} + \frac{12b - 5a}{13} i$	(2)
(d)	There are no marks in (c) if z_3 was used as the den $\arctan\left(\frac{\frac{58}{13}}{\frac{4}{13}}\right) \left\{=1.5019 \text{ or } 86.05^{\circ}\right\}$ or $\arctan\left(\frac{4}{\frac{13}{13}}\right) \left\{=0.068856 \text{ or } 3.945^{\circ}\right\}$	Either correct arctan or tan^{-1} seen or implied by a correct 2sf value (awrt 1.5, 86, 0.069/0.068, 3.9) Could use equivalent trig. Note: $tan \frac{58}{4} = -2.634$ or 0.258	M1
	1.502	1.502 only (not awrt) Mark final answer if 1.502 is followed by e.g., $\frac{\pi}{2}$ -1.502 = 0.06880	A1
			(2) Total 10
			Total IV

Question Number	Scheme	Notes	Marks
7(a)	$f(x) = x^{\frac{3}{2}} + x - 3$ $f(1) = 1 + 1 - 3 = -1 \qquad f(2) = \sqrt{8} + 2 - 3 = 1.828$	Calculates values for both $f(1)$ and $f(2)$ with one correct. Allow e.g., $f(2) = 2\sqrt{2} - 1$ or awrt 2	M1
	f is continuous and changes sign , so root or α in [1, 2]. Correct interval [1, 2] if given. Sign change can be implied by "negative, positive", "f(1) < 0, f(2) > 0" or "f(1)f(2) < 0"	Correct values and sight of continuous, sign change and e.g., root/shown/QED/true/proven/✓	A1
			(2)
(b)	$f(1.5) = 1.5^{\frac{3}{2}} + 1.5 - 3 \ \{=0.3371\}$	Obtains a <u>numerical expression or</u> <u>value</u> for f (1.5)	M1
Work may be	$f(1.25) = 1.25^{\frac{3}{2}} + 1.25 - 3 =$ {-0.3524}	Obtains a <u>value</u> for f(1.25). Requires previous M mark.	d M1
seen in a table	\Rightarrow root/ α / x /it's in/on/ \in [1.25, 1.5] or "in [1.25, 1.5]" or 1.25 \leqslant root/ α / $x \leqslant$ 1.5	Correct values (awrt 0.3 and -0.3 or -0.4) and suitable conclusion. Allow "between $\frac{5}{4}$ and $\frac{3}{2}$ inclusive"	A1
	Do not accept [1.5, 1.25]. Just " $f(1.25) =$ followed b interval bisection. There are no marks if it is	a clear attempt at interpolation.	(3)
(c)(i)	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} + 1$	Correct differentiation. Any correct equivalent e.g., $1.5\sqrt{x} + 1$	B1
(ii)	$\alpha \approx 1.375 - \frac{1.375^{\frac{3}{2}} + 1.375 - 3}{\frac{3}{2} \times 1.375^{\frac{1}{2}} + 1} = \dots$ $\begin{cases} = 1.375 - \frac{-0.01266958256}{2.75890591} = 1.375 + 0.004592248875 \\ = 1.379592249 \end{cases}$ $\begin{cases} \text{exact values} : \frac{11}{8} - \frac{11\sqrt{22} - 52}{32} \div \frac{8 + 3\sqrt{22}}{8} \end{cases}$	Correctly applies the Newton-Raphson formula with 1.375 & their $f'(x)$ and obtains a value. Some working must be seen unless approx. root is seen correct to 6 d.p. accuracy (1.379592) or better. Allow "=1.375 $-\frac{f(1.375)}{f'(1.375)}$ "followed by value but formula must be fully substituted if just followed by value unless " x_0 "defined	M1
	awrt 1.380 or "1.38" (Ignore further iterations)	No clearly incorrect work.	A1
(1)	NB Actual root is 1.379589808. A	1	(3)
(d)	e.g., $\frac{\alpha - 1.25}{1.5 - \alpha} = \frac{0.3524575141}{0.3371173071}$ or e.g., $\frac{1.5 - \alpha}{0.337} = \frac{1.5 - 1.25}{0.337 + 0.352}$	Forms an equation in e.g., α with their f(1.25) and f(1.5) allowing for sign errors only but must be using differences. Allow use of "f(1.25)" and "f(1.5)"- could recover sign error	M1
	$\alpha = 1.377780737 = 1.378$	dM1: Solves ⇒value Requires previous M mark. A1: awrt 1.378	d M1 A1
A 14	May use a formula. Allow work in, e.g., x for all 1		(3)
Alt (Equation of line methods)	or $y - (-0.3524[\text{or } 0.3371]) = \frac{0.3371}{1}$ or $-0.3524[\text{or } 0.3371] = \frac{0.3371 (-0.3371)}{1.5 - 1.2}$ A full method to determine the equation of the	e line using their $f(1.25)$ and $f(1.5)$	M1
	allowing for sign errors only (but allow subseque		d M1 A1
	$\{ \Rightarrow y = 2.758x - 3.800 \}$ $\alpha = 1.377780737 = 1.378$	dM1: Puts $y = 0$ and solves \Rightarrow value Requires previous M mark. A1: awrt 1.378	(3)
	May use a formula. Allow work in, e.g., x for all a		Total 11

Question Number	Scheme	Notes	Marks
8	$y^2 = 8x P(2p^2, 4p)$	$Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$	
	Each part is marked separately. For example there unless that work is refer		
(a) Subs. both x and y into $y^2 = 8x$	LHS or $y^2 \left\{ = \left(\frac{-4}{p}\right)^2 \right\} = \frac{16}{p^2}$ RHS or $8x \left\{ = 8 \times \frac{2}{p^2} \right\} = \frac{16}{p^2}$ So Q lies on the parabola* Allow e.g., $\left(\frac{-4}{p}\right)^2 = 8\left(\frac{2}{p^2}\right) \Rightarrow \frac{16}{p^2} = \frac{16}{p^2} \Rightarrow \text{true}$	Substitutes both coordinates of Q into the parabola equation, obtains e.g., $\frac{16}{p^2}$ twice and makes minimal conclusion - e.g.,	B1*
			(1)
Alt Subs. x or y to find y or x	$x = \frac{2}{p^2} \Rightarrow y^2 = 8 \times \frac{2}{p^2} \text{ or } \frac{16}{p^2} \Rightarrow y = \frac{-4}{p} \text{ or } \pm \frac{4}{p}$ or $y = \frac{-4}{p} \Rightarrow \frac{16}{p^2} = 8x \Rightarrow x = \frac{2}{p^2}$ So Q lies on the parabola*	Substitutes one coordinate of Q into the parabola equation to correctly find the other coordinate and makes minimal conclusion - e.g., - e.g., shown/QED/true/proven/ \checkmark Sight of just" $y^2 = 8x$ " is insufficient but allow " $y_Q^2 = 8x_Q$ "	B1*
			(1)
8(b)	Focus is $(2, 0)$ or $x = 2$, $y = 0$ Could be seen on a diagram	Correct focus seen or used. Condone $(0, 2)$ if $x = 2$, $y = 0$ used but award final A0	B1
	gradient of $PQ = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p} - 4p}{\frac{2}{p^2} - 2p^2}$ $\left\{ = \frac{4p^3 + 4p}{2p^4 - 2} = \frac{2p^3 + 2p}{p^4 - 1} = \frac{2p(p^2 + 1)}{p^4 - 1} = \frac{2p}{p^2 - 1} \right\}$	Attempts the gradient of <i>PQ</i> condoning one term of incorrect sign. Allow this mark is they subsequently attempt to convert it to a normal	M1
	e.g., $y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}(x-2p^2)$ If $y = mx + c$ is used, one of the following express correct gradient seen: $c = 4p - 2p^2$ (gradien	· ·	A1
	Examples with fully simplified gradient (see over $x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3}{p^2}$ or $y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y - 4p = -4$ $y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1} (x - 2p^2) \Rightarrow x = \frac{-4p^3 - 4p^2}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p$ $(2,0) \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p$	eleaf for a fuller list): $\frac{+4p^3 - 4p}{2^2 - 1} = 0$ $4p \Rightarrow y = 0$ $\Rightarrow \text{So } PQ \text{ passes}$ $\Rightarrow \text{through the}$ $\Rightarrow \text{focus*}$	A1*

	Substitutes $x = 2$ and shows $y = 0$ or vice versa or	substitutes both values and shows that	
	the equation is true. Must have minimal conclusion		
	no incorrect work. Condone no conclusion if the ronly. The examples indicate the minimum le		
	exception of using (2, 0) with a fully simplified		
	line followed by a further step which shows an e	<u> </u>	
	e.g., $-4p$ or "1=1" followed by a		
	Work in "a" can only access the accuracy		(4)
Alt 1		Correct focus seen or used.	
I	Focus is $(2, 0)$ or $x = 2$, $y = 0$ Could be seen on a diagram	Condone (0, 2) if $x = 2$, $y = 0$ used	B1
Grad PF =	Could be seen on a diagram	but award final A0	
Grad <i>QF</i>	gradient $PF = \frac{4p}{2p^2-2}$ or $\frac{-4p}{2-2p^2}$	M1. Obtains aumussions for both	
		M1: Obtains expressions for both gradients condoning one term of	
	4 _ 4	incorrect sign in either or both	M1
	and gradient $QF = \frac{\frac{4}{p}}{2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p}}{\frac{2}{p^2} - 2}$	expressions	A1
	$\frac{1}{2-\frac{2}{2}}$ or $\frac{2}{2-2}$	A1: Both correct expressions oe	
	p^2 p^2	_	
		Shows that the gradients are the same	
1	Grad $QF = \frac{4p}{2p^2 - 2} = \text{Grad } PF$	plus minimal conclusion e.g.,	
	-r -	shown/QED/true/proven/√ with no	A1*
	So PQ passes through the focus*	incorrect work. Condone no	
	Note: A varietion is to show and DE or one	conclusion if penalised in (a).	(4)
	Note: A variation is to show grad PF or gra Alt 2 Follows (simila		(4)
Q(b) 1	At 2 ronows (simila Examples of minimum amount of algebra require		ante
o(n)		<u> </u>	ent.
	$4p + \frac{2}{3}$	† —	
	$v-4n-\frac{1}{2}$	$\frac{p}{r}(r-2n^2)$	
	$y + p = 2 \cdot r^2$	$2^{(x-2p)}$	
	$y-4p = \frac{1}{2p^2 - \frac{1}{2}}$	$\overline{n^2}$	
	4 . 4	$\frac{p^2}{8p + \frac{8}{3} - 8p^3 - 8p + 8p^3 - \frac{8}{3}}$	
	4p + -	8p + -8p - 8p + 8pp	_
x = 2, y =	$x = 2 \Rightarrow y - 4p = \frac{p}{2p^2 - \frac{2}{p^2}} (2 - 2p^2)$	$\Rightarrow y = \frac{1}{2} = \frac{1}{2}$	0
	$2p^2-\frac{n^2}{n^2}$	$2p^2 - \frac{n^2}{n^2}$	
	$4p + \frac{4}{}$	$-8p^3 + \frac{8}{p} + 8p^3 + 8p$	
y = 0, x =	$v = 0 \Rightarrow -4p = \frac{p}{\sqrt{x-2p}}$	$\begin{pmatrix} x^2 \end{pmatrix} \Rightarrow x = \frac{p}{\sqrt{1 + (1 + q)^2}} = 2$	
,	$2p^2-\frac{2}{n}$	$4n + \frac{4}{}$	
	p^2	$x = \frac{-8p^{3} + - +8p^{3} + 8p}{4p + \frac{4}{p}} = 2$ $8p + \frac{8}{p} - 8p^{3} - 8p$	
	4 - 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
(2, 0)	4p + -	$\delta p + -\delta p - \delta p$	
$(2,0) \Rightarrow$	$(2,0) \Rightarrow -4p = \frac{1}{2}(2-2p^2) \Rightarrow$	$-4p = {2} \Rightarrow -4p = -4$	$\cdot p$
	$(2,0) \Rightarrow -4p = \frac{p}{2p^2 - \frac{2}{p^2}} (2 - 2p^2) \Rightarrow$	$2p^2-\frac{1}{n^2}$	
	$y-4p=\frac{4p^3+4}{2p^4-1}$	$\frac{4p}{(r-2n^2)}$	
	$y + p - 2p^4 -$	$2^{(x-2p)}$	
	$4n^3 + 4n$	$9n^3 + 9n + 9n^5 + 9n^3 + 9n^5 + 9n$	n
	$x=2 \Rightarrow y-4p = \frac{4p^3+4p}{2p^4-2}(2-2p^2) \Rightarrow$	$y = \frac{8p + 8p - 8p - 8p + 8p - 8p}{2}$	$\frac{0}{0} = 0$
x = 2, y =	$2p^4-2$	$2p^4-2$	
$x=2, y=\dots$	$4p^3 + 4p_{(2)} = 2$	$-4p^3 - 4p + 4p^3 + 4p$	
	or $y-4p = \frac{1}{2n^4-2}(2-2p^2)$	$\Rightarrow y = \frac{-4p^3 - 4p + 4p^3 + 4p}{p^2 + 1} = 0$	
	_		
y = 0, x =	$v = 0 \Rightarrow -4n = \frac{4p^3 + 4p}{(r - 2n^2)^2}$	$) \Rightarrow x = \frac{-8p^5 + 8p + 8p^5 + 8p^3}{4p^3 + 4p} = 2$	
$y=0, \lambda=$	$y - 0 \rightarrow -4p - \frac{1}{2p^4 - 2}(x - 2p)$	$\sqrt{-4p^3+4p}$	
	-r -	΄Γ ' 'Υ	

(2, 0) ⇒	$(2,0) \Rightarrow -4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Rightarrow -4p = \frac{8p^3 + 8p - 8p^5 - 8p^3}{2p^4 - 2} \Rightarrow -4p = -4p$
	$y - 4p = \frac{2p}{p^2 - 1} \left(x - 2p^2 \right)$
x = 2, y =	$x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3 + 4p^3 - 4p}{p^2 - 1} = 0$ or $y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y - 4p = -4p \Rightarrow y = 0$
y = 0, x =	$y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1} (x - 2p^2) \Rightarrow x = \frac{-4p^3 + 4p + 4p^3}{2p} = 2$
$(2,0) \Rightarrow$	$(2,0) \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p$
	this not an exhaustive list (for example there are all the corresponding $y = mx + c$ approaches or those nd the precise choice of algebra will vary widely but with the exception of the last example above this

mark requires substitution into the line followed by a further step which shows an expression that clearly leads to 0, 2 or e.g., -4p or "1=1" followed by a minimal conclusion (unless B0 was given in (a) for that reason).

8(b) cont.	$y^2 = 8x P(2p^2, 4p) Q(\frac{2}{p^2},$	$\frac{-4}{p}$ $X\left(2, \frac{-4}{p}\right)Y\left(2p^2, \frac{-4}{p}\right)$	
Alt 2 Similar	Focus is $(2, 0)$ or $x = 2$, $y = 0$ Could be seen on a diagram	Correct focus seen or used. Condone $(0, 2)$ if $x = 2$, $y = 0$ used but award final A0	B1
triangles	$\frac{XF}{XP} = \frac{\frac{4}{p}}{4p + \frac{4}{p}} \frac{QX}{QY} = \frac{2 - \frac{2}{p^2}}{2p^2 - \frac{2}{p^2}}$	M1: Obtains expressions for two ratios condoning one term of incorrect sign in either or both expressions A1: Both correct expressions oe	M1 A1
	$\frac{XF}{XP} = \frac{1}{p^2 + 1} = \frac{QX}{QY}$ So Δ s XFQ & YPQ are similar $\Rightarrow PQ$ passes through the focus*	Shows that the ratios are the same, makes reference to similarity plus minimal conclusion e.g., shown/QED/true/proven/vwith no incorrect work. Condone no conclusion if penalised in (a).	A1*
			(4)
8 cont.	$y^2 = 8x P(2p^2, 4)$	Ap) $Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$	
(c)	$y = \sqrt{8x^{\frac{1}{2}}} \implies \frac{dy}{dx} = \frac{1}{2}\sqrt{8x^{\frac{1}{2}}}$ or $2y\frac{dy}{dx} = 8 \implies \frac{dy}{dx} = \frac{8}{2y}$ or $x = at^2$, $y = 2at \implies \frac{dx}{dt} = 2at$, $\frac{dy}{dt} = 2at \implies \frac{dy}{dx} = \frac{1}{2}$ (They may use p for t and/or $a = 2$)	Achieves an expression of the correct form (sign/coefficient errors only) for the gradient. There is no requirement for calculus so they may use e.g., $m_T = \frac{1}{t}$. Must $\frac{2a}{2at}$ go beyond $\frac{dx}{dy}$	M1
	$m_T \text{ at } P = \frac{1}{2} \sqrt{8} \frac{1}{\sqrt{2p^2}} \text{ or } \frac{1}{2\pi}$ or $m_T \text{ at } Q = -\frac{1}{2} \sqrt{8} \frac{1}{\sqrt{\frac{2}{p^2}}} \text{ or } \frac{8}{2 \times \left(\frac{-4}{p}\right)}$ or $x = -\frac{1}{2} \sqrt{8} \frac{1}{\sqrt{\frac{2}{p^2}}}$ Any correct unsimplified expression for the tall awarding for Q via explicit differential expression.	$\frac{2}{p^2}, \ y = \frac{-4}{p} \Rightarrow \frac{dx}{dp} = \frac{-4}{p^3}, \ \frac{dy}{dp} = \frac{4}{p^2} \Rightarrow \frac{dy}{dx} = -p$ Ingent gradient in terms of p at either point. If	A1

Eqn of tgt at P : $y-4p=\frac{1}{p}(x-2p^2)$ oe or p (but allow if " a " also present) Coordinates correctly placed. If $y=mx+c$ is used must reach $c=$ following correctly placed coordinates A1: Any correct unsimplified equation for either tangent	M1 A1	
Note: $y = mx + c$: At P , $y = \frac{1}{p}x + 2p$ At Q , $y = -px - \frac{2}{p}$		
$\frac{1}{p}(x-2p^2)+4p=-p\left(x-\frac{2}{p^2}\right)-\frac{4}{p}\Rightarrow x= \text{ or } \frac{1}{p}x+2p=-px-\frac{2}{p}\Rightarrow x=$ Eliminates y from their tangent equations and solves for x (See note below if eliminate x). Gradients must be different and no clear evidence of conversion of any line to a normal. Condone poor algebra.		
$x\left(\frac{1}{p}+p\right) = -\frac{2}{p}-2p \Rightarrow x = \frac{-(2p^2+2)}{(p^2+1)} = -2$ $x = -2$ only	A1	
$y = \frac{1}{p} \left(-2 - 2p^2 \right) + 4p, -p \left(-2 - \frac{2}{p^2} \right) - \frac{4}{p}, \frac{1}{p} \left(-2 \right) + 2p, -p \left(-2 \right) - \frac{2}{p}$ dM 1: Substitutes their <i>x</i> (a constant or function of <i>p</i>) into one of their two tangent equations to obtain an expression for <i>y</i> . Requires previous M mark .		
e.g., $y = 2p - \frac{2}{p}$, $2\left(p - \frac{1}{p}\right)$, $\frac{2}{p}\left(p^2 - 1\right)$, $\frac{2p^2 - 2}{p}$, $\frac{2\left(p + 1\right)\left(p - 1\right)}{p}$ A1: Correct y in simplest form – two terms which could be factorised in any correct way and/or written as a single fraction. Note there is no requirement for coordinate notation.		
Note it is obviously possible to eliminate x . In this case, award the last 4 marks in this order: M1: Eliminates x and solves for y A1: Any correct y in simplest form dM1: Substitutes their y (a constant or function of p) into one of their two tangent equations to obtain an expression for x . Requires previous M mark. A1: $x = -2$		
Working which involves "a" where a is never replaced by 2 can score the Ms	Total 13	

Question Number	Scheme	Notes	Marks
9	$f(n) = 4^n + 6n - 10 \qquad r$	$n \in \mathbb{Z}$ $n \geqslant 2$	

General guidance:

Apply the way that best fits the overall approach.

Condone work in e.g., n instead of k.

Attempts with no induction e.g., not using f(k) in an equation with f(k+1) score a max of 11000. Using e.g., f(k+2) - f(k+1) requires a clear indication of assuming f(k+1) is true to access the last three marks. Alternative explanations are unlikely to access the last three marks unless there is a fully convincing justification of divisibility, e.g., $f(k+1) - f(k) = 3 \times 4^k + 6$ followed by "Since 3×4^k is a multiple of both 3 and 4 and hence 12,

 $3\times4^k+6$ is divisible by 18" is not a sound argument. Attempts that involve further induction on different expressions must be complete methods to access the last 3 marks.

Allow use of -18 but if any different multiples of 18 are involved e.g., 36, the first A1 requires "36 is a multiple of/divisible by (but not "factor of") 18" oe for each case

B1: Any correct numerical expression that is not just "18" is sufficient for this mark e.g., 16 + 12 - 10, 28 - 10, $4^2 + 2$. Starting with e.g., f(3) scores a max of 01110.

Ignore an extra evaluation of f (1) but a comment on f (1)'s divisibility is final A0 since $n \ge 2$

Final A1: There must be evidence that true for $n = k \implies$ true for n = k + 1 but it could be minimal and be scored in a conclusion or a narrative or via both. So if e.g., "Assume true for n = k ..." is seen in the work followed by "true for n = k + 1" in a conclusion this is sufficient.

Condone "for all $n \in \mathbb{Z}$ ", "all $n \in \mathbb{Z}$ n > 2", "all $\mathbb{Z} > (\text{or } \ge)$ 2" but **not** $n \in \mathbb{R}$

Way 1 $f(k+1)-f(k)$	$f(2)=4^2+6\times 2-10=18$	Obtains $f(2) = 18$ with substitution	B1
1(k+1) 1(k)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k+1)-f(k) = 4^{k+1} + 6(k+1)-10 - (4^{k} + 6k - 10)$ $= 4^{k+1} - 4^{k} + 6 = 3 \times 4^{k} + 6$ $= 3(4^{k} + 6k - 10) - 18k + 36$	Attempts $f(k+1)-f(k)$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k)+g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1
	f(k+1) = 4f(k) + 18(2-k) $f(k) may be written in full$	Correct factorised expression Allow $4f(k)+18\times 2-18\times k$ If $f(k+1)$ is not made the subject then e.g., "true for $f(k+1)-f(k)$ " is also required	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
Way 2 $f(k+1) =$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
1(11)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$= 4 \times 4^{k} + 6k - 4$ $= 4(4^{k} + 6k - 10) - 18k + 36$	Uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1
	= 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow $4f(k)+18\times2-18\times k$	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)

Question Number	Scheme	Notes	Marks	
9 cont.	$f(n) = 4^n + 6n - 10 \qquad n \in \mathbb{Z} \qquad n \geqslant 2$			
Way 3 $f(k+1)-mf(k)$	$f(2)=4^2+6\times 2-10=18$	Obtains $f(2) = 18$ with substitution	B1	
	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k+1)-mf(k) = 4^{k+1} + 6(k+1) - 10 - m(4^{k} + 6k - 10)$ $= (4-m)4^{k} + (6-6m)k - 4 + 10m$ e.g. $m = -14 \Rightarrow 18 \times 4^{k} + 90k - 144$ e.g. $m = 4 \Rightarrow -18k + 36$	Attempts $f(k+1) - mf(k)$ and uses a value of m to obtain $c \times 4^k +$ where c is a multiple of their 18 or uses $m = 4$	M1	
	e.g., $f(k+1) = -14f(k) + 18(4^{k} + 5k - 8)$ f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	A correct factorised expression Allow $-14f(k)+18\times4^k+18\times5k-18\times8$ If $f(k+1)$ is not made the subject then e.g., "true for $f(k+1)-mf(k)$ " is also required	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
_			(5)	
$\mathbf{Way 4}$ $\mathbf{f}(k) = 18M$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
1(K)-10M	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k) = 18M$, $f(k+1) = 4 \times 4^k + 6k - 4$ = $4 \times 18M - 18k + 36$	Sets $f(k) = 18M$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1	
	f(k+1) = 18(4M+2-k)	A correct factorised expression Allow $18 \times 4M + 18 \times 2 - 18 \times k$	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
			(5)	
	PAPER T			