

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024 Question Paper Log Number P73488A Publications Code WFM03_01_2401_MS All the material in this publication is copyright © Pearson Education Ltd 2024

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and completing an attempt to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no clear errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent
- dM dependent method mark
- dp decimal places
- sf significant figures
- ***** The answer is given on the paper apply cso

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out provided it is not cursory.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer unless the mark scheme indicates otherwise.

<u>Usual rules for the method mark for solving a 3 term quadratic:</u> (Note: There may be schemes where the below does not apply)

If no method is shown then one root must be obtained that is consistent with their equation.

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Complete attempt to use the correct formula with values for a, b and c leading to x = ... (may be unsimplified). Only allow slips if correct formula quoted first.

3. Completing the square (where a = 1; see scheme if $a \neq 1$)

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Question Number	Scheme	Notes	Marks
1(i)	$(8)\int \frac{1}{16+x^2} \mathrm{d}x = (8)\left(\frac{1}{4}\arctan\left(\frac{x}{4}\right)\right)$	Obtains $\arctan(kx)$ Allow $k = 1$	M1
	$2\left[\arctan\left(\frac{x}{4}\right)\right]_{4}^{4\sqrt{3}} = 2(\arctan\sqrt{3} - \arctan 1) = \dots$	Substitutes the given limits, subtracts either way round and obtains a value (could be a decimal). The substitution does not need to be seen explicitly and may be implied by their value.	dM1
	$\frac{\pi}{6}$ or $p = \frac{1}{6}$ Correct exa	act value (or value for <i>p</i>)	A1
	Accept equivalent exact expressions e	.g. $\frac{2\pi}{12}$ or $p = \frac{2}{12}$ and isw if necessary.	/11
			(3)
(ii)	$2\int \frac{1}{\sqrt{9-4x^2}} dx = 2\left(\frac{1}{2}\arcsin\frac{2x}{3}\right) \left(\text{or e.g. } \arcsin\frac{x}{\frac{3}{2}}\right)$ M1: Obtainsarcsin (<i>kx</i>). Allow <i>k</i> = 1 so allow just arcsin <i>x</i> .		
	$\left[\arcsin\left(\frac{2x}{3}\right) \right]_{\frac{3}{4}}^{k} = \arcsin\left(\frac{2k}{3}\right) = \frac{\pi}{12} + \frac{\pi}{6} \Rightarrow \frac{2\pi}{3}$ Substitutes the given limits, subtract $\operatorname{arcsin}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ and the correct order of reach a value $\pm \alpha \left(\operatorname{arcsin}\left(\frac{2k}{3}\right) - \frac{\pi}{6} \right) = \frac{\pi}{12} \Rightarrow \operatorname{arcsin}\left(\frac{\pi}{3}\right)$ Note that k may be inexact (decimal) or simplified arguments	$4\left(\frac{2k}{3}\right) - \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{12}$ $\frac{k}{3} = \sin\left(\frac{\pi}{4}\right) \Rightarrow \frac{2k}{3} = \frac{\sqrt{2}}{2} \Rightarrow k = \dots$ Its either way round, sets $= \frac{\pi}{12}$, uses Toperations condoning sign errors only to the for k e.g. $\frac{2k}{3} = \frac{\pi}{12\alpha} \pm \frac{\pi}{6} \Rightarrow k = \frac{3\sin\left(\frac{\pi}{12\alpha} \pm \frac{\pi}{6}\right)}{2}$ may be in terms of "sin" but must have a at e.g. $k = \frac{3\sin\left(\frac{\pi}{4}\right)}{2}$	d M1
	$k = \frac{3\sqrt{2}}{4} \text{ or exact eacher of } k = \frac{3\sqrt{2}}{4}$ Note that a common incorrect answer is from an incorrect integral of 2 arc Condone	quivalent e.g., $\frac{3}{2\sqrt{2}}$ $k = \frac{3}{2}\sin\left(\frac{5\pi}{24}\right) (= 0.913)$ which comes $\sin\left(\frac{2x}{3}\right)$ (generally scoring 1010) $x = \frac{3\sqrt{2}}{4}$	A1
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
2(a) Way 1 TU = I	$\mathbf{TU} = \mathbf{I} \Rightarrow \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{pmatrix} \begin{pmatrix} - & - & - \\ - & - & - & 36 + 5b \\ - & - & 4a - & 36 + 5b \\ 0 \text{ btains at least 2 equation} \\ \text{(condone column × row multiplication le} \end{pmatrix}$	$ \begin{array}{cccc} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{array} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ = 0 & -2 + 3c + 7a = 0 \\ = 1 & -3 + 2c + 6a = 1 \\ \text{ns with at least one correct.} \\ \text{ading to the way 2 equations - see below).} \end{array}$	M1
	lgnore errors in unused 6a-8b = -60 e.g., $a=, b=$ obtains values for two of <i>a</i> , <i>b</i> and <i>c</i> . You as the previous M mark was scored, it	l elements or equations. or $7a+3c=2$ $a=, c=$ do not need to check their values. As long is sufficient to just write down values.	d M1
	a = 2, b = 9, c = -4	A1: Two correct values A1: All three correct values and no extra values unless they are rejected.	A1 A1
			(4)
Way 2	$\mathbf{UT} = \mathbf{I} \Longrightarrow \begin{pmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ c & c & -9 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
$\mathbf{UT} = \mathbf{I}$	$\left(-8 a 5\right)$	$\int \left(a 4 b \right) \left(0 0 1 \right)$	
For first 2 marks	$\Rightarrow e.g., 42$ $[45]$ Obtains at least 2 equation (condone column × row multiplication le Ignore errors in unused	-5-4a = 1 -6-4b = 0 +2c-36 = 1] is with at least one correct. adding to the way 1 equations – see above). Helements or equations.	M1
	$\begin{array}{c} \text{e.g., } -4a = -8, -4 \\ \Rightarrow a = -8, -4, \\ \Rightarrow $	b = -36 [$2c = -8$] , $b =$ do not need to check their values. As long is sufficient to just write down values.	d M1

Way 3
Inverses
For first
mark

$$\mathbf{T}^{-1} = \mathbf{U} \Rightarrow \frac{1}{4a - 5b + 36} \begin{pmatrix} 2b - 24 & -3b + 28 & 4\\ 6a - 3b & -7a + 2b & 9\\ -2a + 12 & 3a - 8 & -5 \end{pmatrix} = \begin{pmatrix} 6 & -1 & -4\\ 15 & c & -9\\ -8 & a & 5 \end{pmatrix}$$

 $\Rightarrow e.g., \frac{4}{4a - 5b + 36} = -4, \frac{2b - 24}{4a - 5b + 36} = 6 \begin{bmatrix} -7a + 2b\\ 4a - 5b + 36 \end{bmatrix} = c$
For $\mathbf{T}^{-1} = \frac{1}{f(a,b)} \mathbf{M}$ where \mathbf{M} has at least 1 correct element **and** obtains 2 equations.
Note that there is no requirement to find all the elements of \mathbf{M} .
 \mathbf{OR}
 $\mathbf{U}^{-1} = \mathbf{T} \Rightarrow \frac{1}{-6a - 2c + 3} \begin{pmatrix} 9a + 5c & -4a + 5 & 4c + 9\\ -3 & -2 & -6\\ 15a + 8c & -6a + 8 & 6c + 15 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 7\\ 3 & 2 & 6\\ a & 4 & b \end{pmatrix}$
 $\Rightarrow e.g., \frac{-3}{-6a - 2c + 3} = 3, \frac{4c + 9}{-6a - 2c + 3} = 7 \begin{bmatrix} \frac{6c + 15}{-6a - 2c + 3} = b \end{bmatrix}$
For $\mathbf{U}^{-1} = \frac{1}{f(a,c)} \mathbf{M}$ where \mathbf{M} has at least 1 correct element **and** obtains 2 equations
Note that there is no requirement to find all the elements of \mathbf{M} .

2(b)

$$\frac{x-1}{3} = \frac{y}{-4} = z + 2 \Rightarrow [l_{z}: \mathbf{r} =] \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \lambda \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} \left(\text{or } \left(\mathbf{r} - \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \right) \times \begin{pmatrix} 3 \\ -4 \\ 1 \\ -4 \end{pmatrix} \right) = \mathbf{0}$$
MI
Obtains parametric/vector form (allow one sitp only) or clarsform both.

$$\begin{pmatrix} 6 & -1 & -4 \\ 15 & -4' & -9 \\ -8 & '2' & 5 \end{pmatrix} \begin{pmatrix} 1+3 \\ -4 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6+18\lambda+4\lambda+8-4\lambda \\ 15+45\lambda+16\lambda+18-9\lambda \\ -8-24\lambda-8\lambda-10+5\lambda \end{pmatrix}$$
or
their U × their $\begin{pmatrix} 1 & 3 \\ 0 & -4 \\ -2 & 1 \end{pmatrix}$ or ×their $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ and \times their $\begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$
mor
their U × their $\begin{pmatrix} 1 & 0 \\ 0 \\ -2 \end{pmatrix}$ or ×their $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ and \times their $\begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$
complete and correct method with their b and c for their U × their parametric form or
U × both vectors or U × 2 points on the line and attempts direction.
Must be an attempt to multiply correctly i.e. clearly nor rowsrow bu allow attempts
that use T⁻¹ for U using their a ad b provided all elements are constants and it is a
"Complete method using their parametric form and by $z + 7z = 1+3\lambda$
 $z = 18\lambda + 14$
 $\Rightarrow y = 52\lambda + 33$
 $z = -18 - 27\lambda$
A complete method using their parametric form and their T to produce and solve 3
simultaneous equations to find x, y and z in terms of λ
Alternatively solves $\mathbf{Tr} = (^{-1}-2\mathbf{r})$ and $\mathbf{Tr} = (^{-1}\mathbf{3} - 4\lambda + \mathbf{k}^{-1})$ to find position and
direction
 $\begin{bmatrix} l_{1}: \mathbf{r} = \begin{bmatrix} 14+18\lambda \\ 33+52\lambda \\ -18-27\lambda \end{bmatrix}$
 $\Rightarrow \frac{x-14}{18} = \frac{y-33}{52} = \frac{z+18}{-27}$
 $dM1$
 $dM1$ A1
 $= \frac{z-(-18)}{-27}, \dots = \frac{-z-18}{-27}$
 $dM1$

$$x = t \Longrightarrow y = \frac{4}{3} - \frac{4}{3}t, \ z = \frac{1}{3}t - \frac{7}{3}$$

M1: Obtains parametric form (allow one slip only)

$$\begin{pmatrix} 6 & -1 & -4 \\ 15 & '-4' & -9 \\ -8 & '2' & 5 \end{pmatrix} \begin{pmatrix} t \\ \frac{4}{3} - \frac{4}{3}t \\ \frac{1}{3}t - \frac{7}{3} \end{pmatrix} = \begin{pmatrix} 6t - \frac{4}{3} + \frac{4}{3}t - \frac{4}{3}t + \frac{28}{3} \\ 15t - \frac{16}{3} + \frac{16}{3}t - 3t + 21 \\ -8t + \frac{8}{3} - \frac{8}{3}t + \frac{5}{3}t - \frac{35}{5} \end{pmatrix}$$

M1: As above
$$\mathbf{M1: As above}$$
$$[l_1: \mathbf{r} =] \begin{pmatrix} 8 + 6t \\ \frac{47}{3} + \frac{52}{3}t \\ -9 - 9t \end{pmatrix}$$
$$\Rightarrow \frac{x - 8}{6} = \frac{y - \frac{47}{3}}{\frac{52}{3}} = \frac{z + 9}{-9}$$
$$\mathbf{M1: As above}$$

Question Number	Scheme	Notes	Maı	rks
3(a)(i)	$(\pm 7e, 0)$	Correct coordinates or $x = \pm 7e$, $y = 0$	B1	
(ii)	$x = \pm \frac{7}{e}$	Correct equations	B1	
	SC: If "49" used for "7" consist	tently in (i) and (ii) score B0 B1		
				(2)
(b)(i)	$(PS^{2} =)(x - '7e')^{2} + y^{2}$ oe e.g. $(PS^{2} =)('7e' - x)^{2} + y^{2}$	Correct expression or equivalent with their 7 e . Must be in terms of e , x and y only. Apply isw once a correct expression is seen.	B1ft	
(ii)		Correct expression or equivalent with		
	$\left(PM^2=\right)\left(\frac{7}{e}-x\right)^2$ oe e.g. $\left(x-\frac{7}{e}\right)^2$	their $\frac{7}{e}$. Must be in terms of <i>e</i> and <i>x</i> only. Apply isw once a correct expression is seen.	B1ft	
				(2)
(c)	$\left(\frac{PS}{PM} = e \Longrightarrow\right) PS^2 = e^2 PM^2 \Longrightarrow (x - 7e')^2 + y^2 = e^2 \left(\frac{7}{e} - x\right)^2$ $\implies x^2 - 14ex + 49e^2 + y^2 = 49 - 14ex + e^2 x^2$ Applies $PS^2 = e^2 PM^2$ with their PS and PM and expands (condone poor squaring)			
	$x^{2}(1-e^{2}) + y^{2} = 49(1-e^{2})$ $\Rightarrow \frac{x^{2}}{49} + \frac{y^{2}}{49(1-e^{2})} = 1 \Rightarrow b^{2} = 49(1-e^{2})*$	Reaches given answer with fully correct proof. All shown steps required. Note that it is possible to obtain this result even if the B marks are not scored in (b) e.g. correct expressions but not in the forms required.	A1*	
				(2)
(d)	$(4\sqrt{3})^2 = 49(1-e^2) \Longrightarrow e^2 \dots \text{ or } e = \dots$	Replaces b^2 with $(4\sqrt{3})^2$ and solves for e^2 or e .	M1	
	$e = \frac{1}{7}$	Correct exact value for e (Not \pm)	A1	
				(2)

Question Number	Scheme	Notes	Marks
4(a)	$\mathbf{M}\mathbf{x} = \lambda \mathbf{x} \Rightarrow \begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ -1 & 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ -1 & 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ -1 & 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & -1 \\ -2 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} -\lambda & -1 & -2 \\ -1 & -2 & -1 \\ -2 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 &$	$= \begin{pmatrix} \lambda \\ -2\lambda \\ \lambda \end{pmatrix} \Rightarrow e.g., 2+3 = \lambda \Rightarrow \lambda = 5$ or $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow e.g., -\lambda + 2 + 3 = 0 \Rightarrow \lambda = 5$ leading to a value for λ rect value is o e.g. $2+3 = \lambda \Rightarrow \lambda = 5$ is sufficient.	M1 A1
	Correct answer on	y scores both marks.	(2)
(b)	$\begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{or} \begin{pmatrix} 3 & -1 \\ -1 & 7 \\ 3 & -1 \end{pmatrix}$ $\Rightarrow x =,$ Uses $\mathbf{M}\mathbf{x} = -3\mathbf{x}$ or $(\mathbf{M} - (-3)\mathbf{I})\mathbf{x} = 0$ to provide the set of x, y and z (not all 0) or uses a components if	$3 -1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ or e.g., } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 7 \\ -1 \end{pmatrix}$ $y = \dots, z = \dots$ by suitable vector product (with two correct method unclear)	(2) M1
	$k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	Any correct eigenvector (allow $x =, y$ =, $z =$ and apply isw if a vector is subsequently formed incorrectly)	A1
		2	(2)
(c)	$\mathbf{M}\mathbf{x} = \lambda \mathbf{x} \Rightarrow \text{e.g.}, -\mathbf{I}(1) + 3(1) = \lambda$ $(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = 0 \Rightarrow \text{e.g.}, -\lambda - 1 + 3 = 0$ λ Correct value. May be seen in their D will	$\lambda^{3} - 4\lambda^{2} - 11\lambda + 30 = 0$ det $\mathbf{M} = -30 = \lambda_{1}\lambda_{2}\lambda_{3} = -15\lambda$ = 2 hich may come from an attempt at $\mathbf{P}^{\mathrm{T}}\mathbf{M}\mathbf{P}$.	B1
	$(\mathbf{D} =) \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2' & 0 \\ 0 & 0 & 5' \end{pmatrix}$	Diagonal matrix with –3 and their eigenvalues anywhere on the leading diagonal and 0's elsewhere. Ignore labelling.	B1ft
	$\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\sqrt{6}}{6}\\ -\frac{\sqrt{6}}{3}\\ \frac{\sqrt{6}}{6} \end{pmatrix} \text{ or } \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$ Correct method seen to normalise at eigenvectors or their eigenvector fr	$ \begin{array}{c} \overline{45} \\ -\overline{45} \\ 0 \\ -\overline{45} \\ 2 \end{array} \end{array} \text{ or } \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \overline{45} \\ 3 \\ \overline{45} \\ \overline{3} \\ \overline{45} \\ \overline{3} \\ \overline{45} \\ \overline{3} \\ \overline{45} \\ \overline{5} \\ \overline{5}$	M1
	$\mathbf{D} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ and Both fully correct, consistent and labell denominators rationalised. (Any column	$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{pmatrix}$ Hed matrices. Elements may not have had must of P could be in opposite direction)	A1 (4)
			Total 8

Note that some candidates go straight into solving $|\mathbf{M} - \lambda \mathbf{I}| = 0$ e.g.

$$\begin{vmatrix} -\lambda & -1 & 3 \\ -1 & 4-\lambda & -1 \\ 3 & -1 & -\lambda \end{vmatrix} = 0 \Longrightarrow -\lambda \left(\lambda \left(\lambda - 4 \right) - 1 \right) + 3 + \lambda + 3 \left(1 - 3 \left(4 - \lambda \right) \right) = 0$$
$$\Longrightarrow \lambda^3 - 4\lambda^2 - 11\lambda + 30 = 0 \Longrightarrow \lambda = -3, 5, 2$$

If this is all they do then the B mark in (c) can be awarded for $\lambda = 2$

The other marks in the question are available for the appropriate work.

Question Number	Scheme	Notes	Marks		
5(a) Way 1	$(1 - \operatorname{sech}^2 x =) 1 - (\frac{2}{e^x + e^{-x}})^2$	Replaces sech <i>x</i> with correct expression in terms of exponentials	B1		
From LHS	$=\frac{\left(e^{x}+e^{-x}\right)^{2}-4}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{e^{2x}+2+e^{-2x}-4}{\left(e^{x}+e^{-x}\right)^{2}}$	Expresses as a single fraction (or 2 fractions with the same denominator) and expands numerator	M1		
	$=\frac{(e^{x}-e^{-x})^{2}}{(e^{x}+e^{-x})^{2}}=\tanh^{2} x$	Fully correct proof	A1*		
Way 2 Diff. of	$1 - \operatorname{sech}^{2} x = (1 + \operatorname{sech} x)(1 - \operatorname{sech} x) = \left(1 + \frac{2}{e^{x} + e^{-x}}\right) \left(1 - \frac{2}{e^{x} + e^{-x}}\right)$ Uses difference of two squares and replaces sech x with correct expression in terms of				
2 squares	$= \left(\frac{e^{x} + e^{-x} + 2}{e^{x} + e^{-x}}\right) \left(\frac{e^{x} + e^{-x} - 2}{e^{x} + e^{-x}}\right) = \frac{e^{2x} + 2}{e^{2x} + 2}$ Expresses as a single fraction	$= \left(\frac{e^{x} + e^{-x} + 2}{e^{x} + e^{-x}}\right) \left(\frac{e^{x} + e^{-x} - 2}{e^{x} + e^{-x}}\right) = \frac{e^{2x} + 1 - 2e^{x} + 1 + e^{-2x} - 2e^{-x} + 2e^{x} + 2e^{-x} - 4}{\left(e^{x} + e^{-x}\right)^{2}}$			
	$= \frac{e^{2x} - 2 + e^{-2x}}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{\left(e^{x} - e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} = \tanh^{2} x$	Fully correct proof	A1*		
Way 3	$(\tanh^2 x =) \frac{(e^x - e^{-x})^2}{(e^x + e^{-x})^2}$	Replaces tanh <i>x</i> with correct expression in terms of exponentials	B1		
RHS	$=\frac{e^{2x}-2+e^{-2x}}{(e^{x}+e^{-x})^{2}}=\frac{e^{2x}+2+e^{-2x}}{(e^{x}+e^{-x})^{2}}-\frac{4}{(e^{x}+e^{-x})^{2}}$ Expands numerator and splits into two fractions				
	$= \frac{\left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = 1 - \operatorname{sech}^{2} x$	Fully correct proof	A1*		
			(3)		

Allow "meet in the middle" approaches as long as a conclusion is given e.g. lhs = rhs Example: $rhs = \tanh^{2} x = \frac{\left(e^{2x}-1\right)^{2}}{\left(e^{2x}+1\right)^{2}} \text{ or } lhs = 1-\operatorname{sech}^{2} x = 1-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2}$ B1: Replaces $\tanh x$ or sech x with a correct expression in terms of exponentials $\frac{\left(e^{2x}-1\right)^{2}}{\left(e^{2x}+1\right)^{2}} = \frac{e^{4x}-2e^{2x}+1}{e^{4x}+2e^{2x}+1} \text{ and } 1-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} = \frac{\left(e^{x}+e^{-x}\right)^{2}-4}{\left(e^{x}+e^{-x}\right)^{2}} = \frac{e^{2x}-2+e^{-2x}}{e^{2x}+2+e^{-2x}}$ M1: Makes progress by e.g. removing brackets on *rhs* and expressing *lhs* as a single fraction and expands numerator $\frac{e^{2x}-2+e^{-2x}}{e^{2x}+2+e^{-2x}} = \frac{e^{4x}-2e^{2x}+1}{e^{4x}+2e^{2x}+1} \Rightarrow 1-\operatorname{sech}^{2} x = \tanh^{2} x$ A1: Correct proof and (minimal) conclusion e.g. "= rhs" etc.

$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \frac{\sinh^{2} x}{\cosh^{2} x} = \tanh^{2} x$$
$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \tanh^{2} x$$

Both score B1M1A0 as we would need to see numerators and denominators factorised.

Note that we will allow an equivalent identity to be proved by exponentials and the given identity deduced e.g.

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$
B1: Correct exponential form seen for cosh or sinh used
$$= \frac{e^{2x}}{4} + \frac{1}{2} + \frac{e^{-2x}}{4} - \frac{e^{2x}}{4} + \frac{1}{2} - \frac{e^{-2x}}{4} = 1$$
M1: Expands and collects terms

 $\Rightarrow \cosh^2 x - \sinh^2 x = 1 \Rightarrow 1 - \operatorname{sech}^2 x = \tanh^2 x$

A1*: Fully correct work leading to the correct identity

(c)	$I_5 = I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = I_5$	$\frac{1}{1} - \frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$	
	Uses their reduction formul Note that there may have al Condone the use of the letter p for the $\frac{3}{5}$	la to obtain I_5 in terms of I_1 lready been an attempt at I_1 and allow a "made up" p for this mark.	M1
	This may be implied by e.g. I_5	$= I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}, I_3 = I_1 - \frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)}$	
	$\int \tanh 3x \mathrm{d}x = \frac{1}{3} \ln(\cosh 3x)$	Integrates to obtain $q \ln(\cosh rx)$ oe e.g. $q \ln(\operatorname{sech} rx)$ Condone q and/or $r = 1$	M1
	$I_5 = \frac{1}{3} \ln \left(\frac{e^{\ln 2} + e^{-1}}{2} \right)$	$\left(\frac{9}{25}\right) - \frac{\left(\frac{9}{25}\right)}{6} - \frac{\left(\frac{81}{625}\right)}{12}$	
	Applies $x = \frac{1}{3} \ln 2$ using correct exponenti	al definition of cosh or uses a calculator if	dd M1
	work is correct e.g. $\cosh(\ln 2) = \frac{3}{4}$ to Must not be in terms of p now and must	b obtain a numerical expression for I_5 be using a value of p obtained in part (b)	
	$\frac{1}{3}\ln\frac{5}{4} - \frac{177}{2500}$	Correct answer in correct form (allow $a =, b =, c =$) Allow -0.0708 for c	A1
			(4) Total 11

Note that part (c) is "Hence" so they need to be using the given reduction formula, however, it is possible to find *I*₃ directly e.g. :

$$I_{5} = I_{3} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$$
$$\int \tanh^{3} 3x \, dx = \int \left(\tanh 3x - \tanh 3x \operatorname{sech}^{2} 3x\right) dx = \left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^{2} 3x\right]$$

Score M1 for using the reduction formula to obtain I_5 in terms of I_3 (allow the letter p for the $\frac{3}{5}$ and

allow a "made up" p for this mark) **and** then integrating $tanh^3 3x$ to the correct form e.g. $\alpha \ln(\cosh 3x) + \beta \operatorname{sech}^2 3x(\operatorname{oe})$

The second **M** mark would also score at this point as in the main scheme for integrating tanh 3x to obtain $qln(\cosh rx)$ oe e.g. qln(sech rx)

$$\left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^{2} 3x\right]_{0}^{\frac{1}{3}\ln 2} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = \frac{1}{3}\ln\frac{5}{4} + \frac{1}{6}\times\frac{16}{25} - \frac{1}{6} - \frac{27}{2500}$$

ddM1 for a complete method **using both limits** to obtain a numerical expression for I_5 using the correct exponential definitions or via a calculator.

A1:
$$\frac{1}{3}\ln\frac{5}{4} - \frac{177}{2500}$$

Correct answer in correct form
(allow $a = ..., b = ..., c = ...$) Allow -0.0708 for c

Question Number	Scheme	Notes	Marks
6(a)	$\pm \overline{AB} = \pm \left(\begin{pmatrix} -1\\1\\3 \end{pmatrix} - \begin{pmatrix} 3\\2\\2 \end{pmatrix} \right) = \pm \begin{pmatrix} -4\\-1\\1 \end{pmatrix}, \pm \overline{AC} = \pm \left(\begin{pmatrix} -2\\4\\2 \end{pmatrix} - \frac{1}{2} \right)$	$ = \begin{pmatrix} 3\\2\\2 \end{pmatrix} = \pm \begin{pmatrix} -5\\2\\0 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} -2\\4\\2 \end{pmatrix} - \begin{pmatrix} -1\\1\\3 \end{pmatrix} = \pm \begin{pmatrix} -1\\3\\-1 \end{pmatrix} $	M1
	You can ignore labelling e g	if they find \overline{BA} but call it \overline{AB}	
	e.g., $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	$ \frac{-4}{1} \times \begin{pmatrix} -5\\2\\0 \end{pmatrix} = \begin{pmatrix} -2\\-5\\-13 \end{pmatrix} $ of two relevant vectors (if a correct method ts for their vectors must be obtained)	d M1
	e.g., $\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 13 \end{pmatrix} =$ Attempts the scalar product between the vectors of	6+10+26 = 42 eir normal vector and any of the position A , B or C .	dd M1
	2x + 5y + 13z = 42 oe e.g. $-2x - 5y - 13z + 42 = 0$	Any correct Cartesian equation.	A1
			(4)
(a) alt 1	$\pm \overrightarrow{AB} = \pm \left(\begin{pmatrix} -1\\1\\3 \end{pmatrix} - \begin{pmatrix} 3\\2\\2 \end{pmatrix} \right) = \pm \begin{pmatrix} -4\\-1\\1 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \left(\begin{pmatrix} -2\\4\\2 \end{pmatrix} - \frac{1}{2} \right)$	$-\binom{3}{2}{\binom{2}{2}} = \pm \binom{-5}{\binom{2}{0}}, \pm \overrightarrow{BC} = \pm \binom{-2}{\binom{4}{2}} - \binom{-1}{\binom{1}{3}} = \pm \binom{-1}{\binom{3}{-1}}$	M1
	e.g., $\mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix} =$ Attempts the parametric equation of the pleast one of the	$x = 3 - 4\lambda - 5\mu$ $\Rightarrow y = 2 - \lambda + 2\mu \Rightarrow \text{e.g. } \lambda = z - 2$ $z = 2 + \lambda$ plane and uses components to eliminate at eir parameters.	d M1
	$x = 3 - 4\lambda - 5\mu$		
	e.g., $y = 2 - \lambda + 2\mu \implies$ e.g. $\lambda = z - 2 \implies$ e.g. $\mu = \frac{1}{2}(y - 4 + z)$		
	$z = 2 + \lambda$	f (h. :	
	Eliminates both o	t their parameters.	
	e.g. $x = 3 - 4(z - 2) - \frac{z}{2}(y - 4 + z)$	Any correct Cartesian equation.	A1
(a) alt 2	3a+2b+2a	c=1 1 5 12	
	$ax+by+cz=1 \rightarrow -a+b+3c$	$=1 \implies a = \frac{1}{21}, b = \frac{5}{42}, c = \frac{13}{42}$	
	-2a + 4b + 2	c = 1 21 42 42	
	$\Rightarrow \frac{1}{21}x + \frac{5}{42}$	$-y + \frac{13}{42}z = 1$	
	M1: Substitutes the given points	42 to give 3 equations in 3 unknowns	
	dM1: Solves simultaneously to	find values for "a", "b" and "c"	
	ddM1: Substitutes back in to	o obtain a Cartesian equation	
	AI. Ally COL		

(b)	Line $DE: (\mathbf{r} =) \begin{pmatrix} -1\\1\\-2 \end{pmatrix} \pm \lambda \begin{pmatrix} 2\\5\\13 \end{pmatrix}$	Obtains parametric form for line <i>DE</i> with their normal (or recalculated normal) seen or implied. Allow one slip only.	M1
	$14(2\lambda - 1) - (5\lambda + 1) - 17(2\lambda - 1) - 17(2\lambda$	$(13\lambda - 2) = -66 \implies \lambda =$ the equation of Π_2 and solves for λ – can form was an attempt at $\overrightarrow{OD} \pm \lambda$ (their n)	M1
	$\lambda = \frac{85}{198}$	A correct exact value for λ depending on their method e.g. use of $\mathbf{n} = -2\mathbf{i} - 5\mathbf{j} - 13\mathbf{k}$ gives $\lambda = -\frac{85}{198}$	A1
	$DE = \sqrt{\left(2 \times \frac{85}{198}\right)^2 + \left(5\right)^2}$ or $E = \left(-\frac{14}{99}, \frac{623}{198}, \frac{709}{198}\right) \Rightarrow DE = \sqrt{\left(-\frac{14}{99}, \frac{623}{198}, \frac{709}{198}\right)}$ Correct method to find a numer Requires previo Note $DE = -\frac{85}{198}\sqrt{\left(2\right)^2 + \left(5\right)^2}$	$\overline{5 \times \frac{85}{198}}^{2} + (13 \times \frac{85}{198})^{2}$ e.g. $1 + \frac{14}{99}^{2} + \left(1 - \frac{623}{198}\right)^{2} + \left(-2 - \frac{709}{198}\right)^{2}$ tical expression for distance <i>DE</i> us method mark $\overline{+(13)^{2}} = \dots$ is ok for this mark	d M1
	$DE = \frac{85\sqrt{22}}{66}$	Correct exact answer in the required form or $p = \frac{85}{66}$ or $1\frac{19}{66}$ Not $DE = -\frac{85\sqrt{22}}{66}$	A1
			(5)

Beware – Special Case!

An incorrect sign of λ may fortuitously give the correct length DE. **E.g.** $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 5 \\ 13 \end{pmatrix}$ leading incorrectly to $\lambda = -\frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

E.g.
$$\begin{pmatrix} -1\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-5\\-13 \end{pmatrix}$$
 leading incorrectly to $\lambda = \frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

In such cases score as M1M1A0M1A1ft i.e. we will only penalise it once.

Way 2 Sim. eqns	$(\pm)\left(\frac{x+1}{2} = \frac{y-1}{5} = \frac{z+2}{13}\right)$ $\Rightarrow y = \frac{5}{2}x + \frac{7}{2}, \ z = \frac{13}{2}x + \frac{9}{2}$	Obtains Cartesian form for line <i>DE</i> with their normal (or recalculated normal) allowing one slip only and attempts to find two variables in terms of the other variable	M1
For first three marks	$14x - \left(\frac{5}{2}x + \frac{7}{2}\right) - 17\left(\frac{13}{2}x + \frac{9}{2}\right) = -66$ $\implies x = -\frac{14}{99}, \ y = \frac{623}{198}, \ z = \frac{709}{198}$	M1: Substitutes into the plane equation and finds $x =, y =, z =$ A1: Correct exact values \Rightarrow Way 1 for last two marks	M1 A1
(c)	e.g. $\overrightarrow{AF}.\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 1\\ 1\\ q - 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$2 \left[\begin{pmatrix} 2 \\ 5 \\ 13 \end{pmatrix} = 2 + 5 + 13q - 26$ or $2(q-2) \left[-5(q-2) - 5 - 2 \right]$ $4 -1 \left[-1 \right]$	M1
	or e.g. rule of Sarrus: $\begin{vmatrix} -5 & 2 & 0 & -5 \\ 1 & 1 & q-2 \end{vmatrix}$ Correct method for vector between <i>F</i> and <i>A</i> normal or attempts the scalar triple product look	$\begin{vmatrix} 5 & 2 \\ 1 & 1 \end{vmatrix} = -4(2(q-2)) - 5 - 5(q-2) - 2$ A, B or C and finds scalar product with their oduct to obtain a linear expression in q. for at least 2 correct "elements".	
	$\frac{1}{6}(13q-19) = \pm 12 \Rightarrow q = \dots$ Sets $\frac{1}{6}$ of their expression in q equal to one or both of ± 12 (or equivalent work e.g. their expression in q equal to one or both of ± 72) and proceeds to a value for q		d M1
	$q = 7, -\frac{53}{13}$	Correct values. Allow exact equivalents for $-\frac{53}{13}$ e.g. $-4\frac{1}{13}$	A1
			(3) Total 12

Question Number	Scheme/Notes			Marks
7(a)	$y = \arccos(\operatorname{sech} x)$			
	e.g.: $\cos y = \operatorname{sech} x \Longrightarrow$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(-\operatorname{sech} x \tanh x)}{\sqrt{1 - \operatorname{sech}^2 x}}$	$-\sin y \frac{dy}{dx} = -\operatorname{sech} x \tanh x$ or, e.g., $-\sin y = -\operatorname{sech} x \tanh x \frac{dx}{dy}$	$\cos y = (\cosh x)^{-1} \Rightarrow$ $-\sin y \frac{dy}{dx} = -(\cosh x)^{-2} \sinh x$	M1
	Differentiates to ob	tain an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$	only	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\operatorname{sech} x \tanh x}{\tanh x}$	$\sqrt{1 - \operatorname{sech}^2 x} \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$	$\sqrt{1 - \operatorname{sech}^2 x} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^2 x}$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^2 x}$	d M1
	Uses correct identities to obta	ain an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ in ut accept $\sqrt{\tanh^2 x}$ as "no root	terms of x only with no roots	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x$	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x$	$\frac{dy}{dx} = \frac{\cosh x}{\sinh x} \cdot \frac{\sinh x}{\cosh^2 x}$ $\Rightarrow \frac{dy}{dx} = \operatorname{sech} x$	
	Fully correct proof. An equ functions with no roots mus Withhold this ma	uation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ and exact st be seen before the given ans "no roots" urk for any mathematical error	tly two different hyperbolic swer but accept $\sqrt{\tanh^2 x}$ as e.g., clear use of	A1*
	$\frac{d}{dx}(\arccos x) =$ or e.g. hyperbolic Allow slips if they are	$= + \frac{1}{\sqrt{1 - x^2}}$ and $\frac{d}{dx}(\operatorname{sech} x) = -$ functions written as trig funct e recovered but clear and cons	+ sech x tanh x ions or vice versa. sistent errors score A0	
	Note: There may be other n	nethods seen, e.g., using expo middle"	nentials and "meeting in the	(3)

(b)

$$e.g. \frac{d}{dx} (\cot h x) = -\csc h^{2} x \text{ or } \frac{\sinh^{2} x - \cosh^{2} x}{\sinh^{2} x} \text{ or } \frac{-\operatorname{sech}^{2} x}{\operatorname{chh}^{2} x} \text{ or } 1 - \coth^{2} x \text{ cc.}}{\operatorname{chh}^{2} x} \frac{d}{\operatorname{c}^{*} - e^{-x}}^{2} - (e^{+} - e^{-x})^{2}} \text{ or } \frac{2e^{2x}(e^{2x} - 1)^{2}}{(e^{2} - 1)^{2}} \text{ or } \frac{-4}{(e^{2} - e^{-x})^{2}} \text{ etc.}}{(e^{2} - e^{-x})^{2}} \text{ or } \frac{2e^{2x}(e^{2x} - 1)^{2}}{(e^{2} - 1)^{2}} \text{ or } \frac{-4}{(e^{2} - e^{-x})^{2}} \text{ etc.}$$
Correct derivative of coth x in any form. Allow recovery if they write e.g., -cosec^{2}x when -cosech^{2}x is clearly implied by subsequent work.
e.g., sech x - cosech^{2}x = 0 \Longrightarrow sech x = cosech^{2}x \Rightarrow \frac{1}{\cosh x} = \frac{1}{\sin^{2} x} \Rightarrow \frac{1}{a} \cosh^{2} x \Rightarrow b \operatorname{sech} x + c = 0
or
$$sech x - cosech^{2}x = 0 \Longrightarrow \frac{2}{e^{-1} + e^{-x}} - \left(\frac{2}{e^{-1} - e^{-x}}\right)^{2} = 0 \Rightarrow$$

$$\Rightarrow Ae^{e^{+}} + Be^{e^{+}} + Ce^{2^{+}} + De^{+} + E = 0$$
Sets $f'(x) = 0$ and uses correct identities to obtain a 3TQ in cosh x or sech x
or substitutes the correct exponential forms and obtains as 1 stem quartic in e^{x}
$$\operatorname{cosh}^{2} x - \cosh x - 1 = 0 \text{ or } \operatorname{sech}^{2} x + \operatorname{sech} x - 1 = 0 \text{ oe}$$

$$\operatorname{correct} quadratic equation or correct quartic equation.$$

$$\operatorname{cush} x = \frac{-(-1)^{+} \sqrt{(-1)^{-} - 4(1)(-1)}}{2(1)} \left(= \frac{1 + \sqrt{5}}{2} \right)$$

$$\operatorname{Solves quadratic resulting from sech x + their derivative of coth x = 0$$
Mut obtain a real and exact value > 1 (or between 0 and 1 if sech used).
$$\operatorname{Apply usual rules. (No need to reject invalid values)$$
If no solving method seen one solution must be consistent with their equation.
For the 5 term quartic in e⁴ progress is unlikely unless they proceed via e.g.
$$\left(\frac{e^{+} - (-1 + \sqrt{5})e^{+} + 1 = 0 \Rightarrow e^{x} - \frac{1 + \sqrt{5} + \sqrt{(1 + \sqrt{5})^{2} - 4}{2}} \Rightarrow z = \dots$$
Uses correct logarithmic from responentials to find x as a ln of an exact value.
Exponential definition must be correct and quadratic solving subject to usual rules or consistent with their equation leading to a value of e^{x} > 0
$$\Rightarrow x = \ln\left(\frac{1}{2}(1 + \sqrt{5}) + \sqrt{\frac{1}{2}}(1 + \sqrt{5})\right) \text{ or accept x = 1n\left(\frac{1 + \sqrt{5}}{2} + \sqrt{\frac{1 + \sqrt{5}}{2}}\right\right)$$

Correct work in (b) leading to:

$$\cosh^2 x - \cosh x - 1 = 0 \Rightarrow \cosh x = \frac{1 + \sqrt{5}}{2}$$

 $x = \operatorname{arcosh}\left(\frac{1 + \sqrt{5}}{2}\right) = \ln\left(\frac{1 + \sqrt{5}}{2} + \sqrt{\frac{1 + \sqrt{5}}{2}}\right)$

With no evidence where the $\sqrt{\frac{1+\sqrt{5}}{2}}$ comes from, scores: B1M1A1dM1ddM0A0

Question Number	Scheme	Notes	Marks
8(a)	$\frac{dx}{dy} = \frac{y}{4} \text{or} 2y\frac{dy}{dx} = 8 \text{or} \frac{dy}{dx} = \left(\frac{1}{2}\right)^{2}$ Any correct equation in $\frac{dx}{dy}$	$\frac{1}{2}\left(2\sqrt{2}\right)x^{-\frac{1}{2}} \operatorname{or}\left(\frac{1}{2}\right)\left(2\sqrt{2}\right)\left(\frac{2\sqrt{2}}{y}\right) \mathbf{oe}$ or $\frac{dy}{dx}$ in terms of y or x	B1
$\left(\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \right) \int \sqrt{1 + \left(\frac{y}{4}\right)^2} (dy) \text{ or } \left(\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} dy = \right) \int \sqrt{1 + \left(\frac{4}{y}\right)^2} \cdot \frac{y}{4} (dy)$ Forms $\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} (dy) \text{ or } \int \sqrt{1 + \left(\frac{dy}{dy}\right)^2} dx (dy)$ sourcetly with their derivative		$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} dy = \iint \sqrt{1 + \left(\frac{4}{y}\right)^2} \cdot \frac{y}{4} (dy)$ $\frac{dx}{dx} (dy) \text{correctly with their derivative}$	M1
	$\frac{1}{y^{1+}(dy)} \xrightarrow{(dy)} or \int \sqrt{1+}(dx) \frac{1}{y^{2}} $	dy (dy) concerts with their derivative	
	$x = 16 \implies y = 144 \implies p = 12, \ a = 24$ $\Rightarrow (\text{perimeter of } R =) 24 + 2 \int_{0}^{12} \sqrt{1 + \frac{y^2}{16}} dy$	Correct expression	A1
			(3)

(b)	$y = 4 \sinh u \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = 4 \cosh u$	Correct derivative. Condone $\frac{dy}{dx} = 4 \cosh u$	B1
	$\int \sqrt{1 + \frac{y^2}{16}} \mathrm{d}y = \int \sqrt{1 + \frac{(4\sinh u)^2}{16}} (4\cosh u) (\mathrm{d}u)$ $\left(= 4 \int \cosh^2 u \mathrm{d}u\right)$	Full substitution, correct for their $\frac{dy}{du}$	M1
	$\int \cosh^2 u \mathrm{d}u = \int \left(\frac{1}{2} \cosh 2u\right)$	$+\frac{1}{2}\bigg)\mathrm{d}u = \frac{1}{4}\sinh 2u + \frac{1}{2}u$	
	or $\int \left(\frac{\mathrm{e}^{u} + \mathrm{e}^{-u}}{2}\right)^{2} \mathrm{d}u = \int \left(\frac{\mathrm{e}^{2u}}{4} + \mathrm{e}^{-u}\right)^{2} \mathrm{d}u = \int \left(\frac{\mathrm{e}^{2u}}{4$	$\frac{1}{2} + \frac{e^{-2u}}{4} du = \frac{e^{2u}}{8} + \frac{1}{2}u - \frac{e^{-2u}}{8}$	d M1 A1
	d M1: Uses $\cosh^2 u = \pm \frac{1}{2} \cosh 2u \pm \frac{1}{2}$ and it	integrates to obtain $a \sinh 2u + bu$ or uses	
	$k(e^{u} + e^{-u})$ for cosh u , expands and in	ntegrates to obtain $ae^{2u} + bu + ce^{-2u}$	
	A1: Correct integration		
	$\begin{bmatrix} 1 & 1 & 2\mu \end{bmatrix} = \ln(3+\sqrt{10}) \qquad \begin{bmatrix} 1 & 2\mu \end{bmatrix} = \frac{-2\mu}{\ln(3+\sqrt{10})}$		
	$= 24 + (2)(4) \left[\frac{1}{4} \sinh 2u + \frac{1}{2}u \right]_{0}$	$= 24 + (2)(4) \left[\frac{e}{8} + \frac{1}{2}u - \frac{e}{8} \right]_{0}$	
	$= 24 + 2 \left[2 \sinh u \sqrt{1 + \sinh^2 u} + 2u \right]_{0}^{\operatorname{arsinh3} = \ln(3 + \sqrt{10})}$	$= 24 + e^{2\ln(3+\sqrt{10})} - e^{-2\ln(3+\sqrt{10})} + 4\ln(3+\sqrt{10})$	
	$= 24 + 2\left[(2)(3)\sqrt{1+3^2} + 2\ln\left(3+\sqrt{10}\right)\right]$	$24 + \left(3 + \sqrt{10}\right)^2 - \frac{1}{\left(3 + \sqrt{10}\right)^2} + 4\ln\left(3 + \sqrt{10}\right)$	dd M1
	Substitutes arsinh3 and/or $\ln(3+\sqrt{3^2+1})$ int	o their expression using correct identities or	
	correctly removes exponentials to obtain a numerical expression in constants and lns only Accept use of calculator here e.g. $\sinh(2 \operatorname{arsinh3}) = 6\sqrt{10}$		
	$24 + 12\sqrt{10} + 4\ln\left(3 + \sqrt{10}\right)$	Correct answer – any exact simplified	A 1
	or, e.g., $4\left(6+3\sqrt{10}+\ln\left(3+\sqrt{10}\right)\right)$	equivalent	AI
	Note: Integration by calculator is likely to access the first two marks only		(6)
			Total 9
		IUIAL FUK PAPER: 7	J MAKKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom