

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72467A Publications Code WFM02_01_MS_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for this paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- _ The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao), unless shown, for example as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general priniciples)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a| leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $x = \dots$

Method mark for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1(a)	$y = \ln(5+3x) \Longrightarrow \frac{dy}{dx} = \frac{3}{5+3x}$	Correct first derivative	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{5+3x} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{9}{(5+3x)^2}$	$\frac{d^3 y}{dx^3} = \frac{54}{(5+3x)^3}$	
	M1: Continues the process of differentiating and reaches $\frac{d^3 y}{dx^3} = \frac{k}{(5+3x)^3}$ oe		
	Note this may be achieved via the quotient rule e.g. $\frac{d^3 y}{dx^3} = \frac{-9 \times -2 \times 3(5+3x)}{(5+3x)^4}$		
	A1: Correct simplified third derivative. Al	llow e.g. $\frac{54}{(5+3x)^3}$ or $54(5+3x)^{-3}$.	
(b)	3	9 54	(3)
	$y_0 = \ln 5, y'_0 = \frac{5}{5}, y''_0 =$	$-\frac{y}{25}, y_0'''=\frac{y}{125}$	
	$\Rightarrow \ln(5+3r) \approx \ln 5 + \frac{3}{2}r =$	$9 x^2 + 54 x^3 +$	
	$\Rightarrow \ln(3+3x) \approx \ln 3 + \frac{1}{5}$	$\overline{25} \overline{2!}^+ \overline{125} \overline{3!}^+ \cdots$	M1
	Attempts all values at $x = 0$ and applies Maclaurin's theorem.		
	The form of the expansion must be correct including the factorials or their values.		
	Note that this is "Hence" and so do not allo	w other methods e.g. Formula Book.	
	$\ln(5+3x) \approx \ln 5 + \frac{3}{5}x - \frac{3}$	$\frac{9}{10}x^2 + \frac{9}{125}x^3 + \dots$	Δ1
	Correct expansion. The "ln(5 +	-3x = " is not required.	AI
			(2)
(c)	$\ln(5-3x) \approx \ln 5 - \frac{3}{5}x - \frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots$		
	Correct expansion even if ob	tained "from scratch"	B1ft
	powers of x only in an expansion of the correct	t form e.g. a polynomial in ascending	
	powers of	<i>x</i> .	
	(7 - 2)		(1)
(a)	$\ln\frac{(5+3x)}{(5-3x)} = \ln(5+3x) - \ln(5-3x)$		
	$\ln 5 + \frac{3}{5}x - \frac{9}{50}x^2 + \frac{9}{125}x^3 + \dots - \left(\ln 5 - \frac{3}{5}x - \frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots\right)$		M1
	Subtracts <u>their</u> 2 different series to obtain a	t least 2 non-zero terms in ascending	
	powers of 6 18	<i>x</i> .	
	$=\frac{5}{5}x+\frac{18}{125}x$	² +	
	Correct terms. Allow e.g. 0+	$\frac{6}{5}x + 0x^2 + \frac{18}{125}x^3 + \dots$	Al

Allow both marks to score in (d) provided the correct series have been obtained in	
(b) and (c) by any means.	
	(2)
	Total 8

Question	Scheme	Notes	Marke
	1		Warks
2(a)	$\frac{1}{(2n-1)(2n+1)(2n+2)}$	$= \frac{A}{2m+1} + \frac{B}{2m+1} + \frac{C}{2m+2}$	
	(2n-1)(2n+1)(2n+3)	2n-1 $2n+1$ $2n+3$	M1
	$\rightarrow A = \dots$	$B = \dots, C = \dots$	
	$\frac{1}{8(2n-1)} - \frac{1}{4(2n+1)} + \frac{1}{8(2n+3)}$	or e.g $\frac{16n-8}{16n-8} - \frac{16n+4}{8n+4} + \frac{16n+24}{16n+24}$	
	1	1 1	
	or e.g. $\frac{8}{(2n-1)}$	$-\frac{4}{(2n+1)}+\frac{8}{(2n+3)}$	A1
	Correct partial fracti	(2n+1) $(2n+3)$	
	This mark is not for the correct values of	of A , B and C , it is for the correct fractions.	
			(2)
(b)	$\frac{1}{8} \sum_{r=1}^{n} \left(\frac{1}{2r-1} - \right)$	$\left(\frac{2}{2r+1} + \frac{1}{2r+3}\right) =$	
	$\frac{1}{8}\left(\frac{1}{1}-\frac{2}{3}+\frac{1}{5}\right)$		
	$+\frac{1}{3}\frac{2}{5}+$		
	$+\frac{1}{5}-\frac{2}{7}+\frac{1}{9}$		
			MI
	+ 1/	$\frac{2}{1} + \frac{1}{1}$	
	2n-3/2	2n-1 $2n+1$	
	+	$\frac{2}{2} + \frac{1}{2}$	
	2n-1 2	(n+1 2n+3)	
	Uses the method of differences to find	l sufficient terms to establish cancelling.	
	E.g. 3 rows at the start and	2 rows at the end or vice versa	
	This may be implied if they extra	act the correct non-cancelling terms.	
	$=\frac{1}{8}\left(1-\frac{1}{3}-\frac{1}{2n+1}+\frac{1}{2n+3}\right)$ or e.g. =	$=\frac{1}{8}\left(1-\frac{2}{3}+\frac{1}{3}+\frac{1}{2n+1}-\frac{2}{2n+1}+\frac{1}{2n+3}\right)$	A1
	Identifies the correct non-cance	elling terms. May be unsimplified.	
	$=\frac{1}{8}\left(\frac{2(2n+1)(2n+3)}{3(2n+3)}\right)$	$\frac{-3(2n+3)+3(2n+1)}{1)(2n+3)} = \dots$	
	Attempts to combine terms into one fr constant term and at least 2 different a numerator when co	action. There must have been at least one lgebraic terms with at least 3 terms in the mbining the fractions.	dM1

$=\frac{n(n+2)}{3(2n+1)(2n+3)}$	cao	A1
		(4)
		Total 6

Question Number	Scheme	Notes	Marks
3(a)	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	$y = \frac{1}{z}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x}$	Correct differentiation	B1
	$-\frac{x^2}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = \frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
			(3)
(a) Way 2	$y = \frac{1}{z} \Rightarrow zy = 1 \Rightarrow y \frac{dz}{dx} + z \frac{dy}{dx} = 0$	Correct differentiation	B1
	$-\frac{y}{z}x^2\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = -\frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(a) Way 3	$y = \frac{1}{z} \Rightarrow z = \frac{1}{y} \Rightarrow \frac{dz}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$	Correct differentiation	B1
	$-\frac{1}{y^2}\frac{dy}{dx} - \frac{1}{xy} = -\frac{2}{x^2}$	Substitutes into differential equation (II)	M1
	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	Obtains differential equation (I) with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(b)	$I = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$	Correct integrating factor of $\frac{1}{x}$	B1
	$\frac{z}{x} = -\int \frac{2}{x^3} dx$	For $Iz = -\int \frac{2I}{x^2} dx$. Condone the "dx" missing.	M1
	$\frac{z}{x} = \frac{1}{x^2} + c$	Correct equation including constant	A1
	$z = \frac{1}{x} + cx$	Correct equation in the required form	A1
			(4)
(c)	$\frac{1}{y} = \frac{1}{x} + cx \Longrightarrow -\frac{8}{3} = \frac{1}{3} + 3c \Longrightarrow c = -1$	Reverses the substitution and uses the given conditions to find their constant	M1

$\frac{1}{y} = \frac{1}{x} - x \Longrightarrow y = \frac{x}{1 - x^2}$	Correct equation for y in terms of x. Allow any correct equivalents e.g. $y = \frac{1}{x^{-1} - x}, \ y = \frac{1}{\frac{1}{x} - x}$	A1
		(2)
		Total 9

Question Number	Scheme	Notes	Marks	
4(a)	$\frac{dy}{dx} = y^2 - x \Longrightarrow \frac{d^2 y}{dx^2} = 2y\frac{dy}{dx} - 1$	Correct expression for $\frac{d^2 y}{dx^2}$	B1	
	$\frac{d^3 y}{dx^3} = 2y \frac{d^2 y}{dx^2} +$ M1 : Applies the product rule to obtain $\frac{d^3 y}{dx^3}$ where is no A1 : Correct expression. Applies	$2\left(\frac{dy}{dx}\right)^{2}$ $= Ay\frac{d^{2}y}{dx^{2}} + \dots \text{ or } \frac{d^{3}y}{dx^{3}} = \dots + B\left(\frac{dy}{dx}\right)^{2}$ on-zero ply isw if necessary.	M1 A1	
	$\frac{d^3 y}{dx^3} = 2y \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 \Rightarrow \frac{d^4 y}{dx^4} = 2y \frac{d^3 y}{dx^3} + 2\frac{dy}{dx}\frac{d^2 y}{dx^2} + 4\frac{dy}{dx}\frac{d^2 y}{dx^2}$ $\frac{d^4 y}{dx^4} = 2y \frac{d^3 y}{dx^3} + 6\frac{dy}{dx}\frac{d^2 y}{dx^2}$ Correct expression for $\frac{d^4 y}{dx^4}$ or correct values for A and B.			
	Note: If e.g. $\frac{d^2 y}{dx^2} = 2y \frac{dy}{dx}$ is obtained, allow recovery in (a) so B0M1A1A1 is possible.			
(b)	$(y)_{-1} = 1, (y')_{-1} = 2, (y'')_{-1} = 3,$ Attempts the values up to at least the 3rd Condone slips provided the intention is clease	$(y''')_{-1} = 14, (y'''')_{-1} = 64$ derivative using $x = -1$ and $y = 1$ ear. May be implied by their values.	M1	
	$(y=)1+2(x+1)+\frac{3(x+1)^2}{2}+\frac{14}{2}$ Correct application of the Taylor If the expansion is just written down with no for their values. E.g. $y = -1 +$ with no evid	$\frac{(x+1)^3}{3!} + \frac{64(x+1)^4}{4!} + \dots$ series in powers of $(x + 1)$ formula quoted then it must be correct dence $y = f(-1)$ was meant scores M0	M1	
	$(y=)1+2(x+1)+\frac{3(x+1)^2}{2}+\frac{7}{2}$ Correct simplified expansion. T	$\frac{(x+1)^3}{3} + \frac{8(x+1)^4}{3} + \dots$ The "y =" is not required.	Al	
			(3) Total 7	

Question 5 General Guidance

B1: This mark is for sight of -8 seen as part of their working. It may be seen as e.g. embedded in an inequality, as part of their solution if they consider for example x > -8, x < -8 or -8 is seen in a sketch etc.

Do not allow for just e.g. x + 8 > 0,

M1: Any valid attempt to find at least one critical value other than x = -8 (see below). Condone use of e.g. "=", ">", "<" etc as part of their working.

Note these usually come in pairs as 3, $-\frac{19}{3}$ or 3, -13

M1: A valid attempt to find all critical values.

Condone use of e.g. "=", ">", "<" etc as part of their working.

- A1: Any 2 critical values other than x = -8. May be seen embedded in an inequality or on a sketch.
- A1: 2 correct regions
- A1: All correct with no extra regions

Question Number	Scheme	Notes	Marks
5	(x =) - 8	This cy stated or used	B1
	For cv's 3, $-\frac{1}{3}$	DR For cv's $3, -13$	
	Examples: $(2 - 2)(1 - 2)$	Examples:	
	$x^2 - 9 = (x+8)(6-2x) \Longrightarrow x = \dots$	$x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	$(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	$-(x^{2}-9)(x+8) = (x+8)^{2}(6-2x) \Longrightarrow x = \dots$	N/1
	or	or	MI
	$\frac{x^2-9}{(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2-9}{-(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	For cv's 3, $-\frac{19}{3}$ A	ND For cv's $3, -13$	
	Examples:	Examples:	
	$x^2 - 9 = (x+8)(6-2x) \Longrightarrow x = \dots$	$x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	or $(r^2 - 9)(r+8) - (r+8)^2(6-2r) \rightarrow r -$	or $-(r^2 - 9)(r + 8) - (r + 8)^2(6 - 2r) \rightarrow r -$	
	$(x - y)(x + 0) - (x + 0)(0 - 2x) \rightarrow x - \dots$	$-(x - 9)(x + 6) - (x + 6)(6 - 2x) \rightarrow x - \dots$	M1
	$\frac{x^2-9}{(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2-9}{-(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	Any two of: $x = -13, -\frac{19}{3}, 3$	For any two of these cv's. May be seen embedded in their inequalities. Depends on at least one previous M mark	A1
	12		
	-13 < x < -8, -8	$< x < -\frac{1}{3}, x > 5$	
	A1 : Any 2 of the	ese inequalities.	
	Note that $-13 < x < -\frac{19}{3}$, $x \neq -8$ would count as 2 correct inequalities.		A1 A1
	Also condone $-13 < x < -\frac{19}{3}$,	x > 3 as 2 correct inequalities.	
	Depends on at least o	ne previous M mark.	
	AI: All correct and no other regions	s. Depends on all previous marks. Equalities $e g$ for $-13 < r < -8$ allow	
	x > -13 and $x < -8$, $x > -13$, $x < -8$, $-8 > -8$	$x > -13, (-13, -8), \{x: x > -13 \cap x < -8\}$	
	But not $x > -$	-13 or x < -8	
	Note that $-13 < x < -\frac{19}{3}$, x	$\neq -8$, $x > 3$ is fully correct.	
			(6)
			Total 6

Note that it is possible to find all the cv's by squaring both sides of the equation:

(x=)-8	This cv stated or used	B1
$\frac{(x^2 - 9)^2}{(x+8)^2} \Rightarrow (6-2x)^2 \Rightarrow x^4 - 18x^2 + 81 = (36 - 24x + 4x^2)(x^2 + 16x + 64)$ $\Rightarrow 3x^4 + 40x^3 - 74x^2 - 960x + 2223 = 0 \Rightarrow x = \dots$ M2 Requires a complete attempt to square both sides, multiply up to obtain a quartic equation and an attempt to solve to find at least 1 critical value other than $x = -8$		M1M1
Any two of: $x = -13, -\frac{19}{3}, 3$ For any two of these cv's. May be seen embedded in their inequalities. Depends on both previous M marks.		A1
$-13 < x < -8, -8 < x < -\frac{19}{3}, x > 3$ A1: Any 2 of these inequalities. Note that $-13 < x < -\frac{19}{3}, x \neq -8$ would count as 2 correct inequalities. Also condone $-13 < x < -\frac{19}{3}, x > 3$ as 2 correct inequalities. Depends on at least one previous M mark. A1: All correct and no other regions. Depends on all previous marks		A1 A1
A1: All correct and no other regions. Depends on all previous marks. Allow equivalent notation for the inequalities e.g. for $-13 < x < -8$ allow $x > -13$ and $x < -8$, $x > -13$, $x < -8$, $-8 > x > -13$, $(-13, -8)$, $\{x:x > -13 \cap x < -8\}$ But not $x > -13$ or $x < -8$ Note that $-8 < x < -\frac{19}{3}$, $x \ne -8$, $x > 3$ is fully correct.		

Question Number	Scheme	Notes	Marks
6(a)	6(a)	A straight line anywhere that is not vertical or horizontal which does not pass through the origin. It may be solid or dotted. Clear "V" shapes score M0.	M1
		A straight line in the correct position. Must have a positive gradient and lie in quadrants 1, 3 and 4. Ignore any intercepts correct or incorrect. If there are other lines that are clearly "construction" lines e.g. a line from 2i to 3 they can be ignored. The line may be solid or dotted. However, if there are clearly several lines then score A0.	A1
			(2)

Part (b)

The approaches below are the ones that have been seen most often.

Apply the mark scheme to the overall method the candidate has chosen.

There may be several attempts:

- If none are crossed out, mark all attempts and score the best single complete attempt
- If some attempts are crossed out, mark the uncrossed out work
- If everything is crossed out, mark all the work and score the best single complete attempt

Note that the question does not specify the variables the candidates should work in so they may use: e.g. z = x + iy and w = u + iv or w = x + iy and z = u + iv or any other letters so please check the work carefully.

Note that the M marks are all dependent on each other.

(b)		Attempts to make z the subject.	
Way 1	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
	~	real and non-zero.	
	$z = \frac{2(u+iv)i}{v}$ or e.g.	$z = \frac{2(x+iy)i}{2}$	
	u + iv - i	x + iy - i	
	$z = \frac{2(u+iv)i}{2} \times \frac{u-(v)}{2}$	-1)i or equivalent	D.61
	u + (v-1)i $u - (v)$	-1)i	d M1
	Introduces $w = u + iv$ or e.g. $w = x + iy$ an	d attempts to multiply numerator and	
	denominator by the complex conjugate of would be sufficient e.g. no expan	the denominator. The above statement is needed for this mark.	
	$z = \frac{-2u}{1-2u} + \frac{2u^2 + 2v(v-1)}{1-2v}$ i or e g	$z = \frac{-2x}{1-2x} + \frac{2x^2 + 2y(y-1)}{1-2}i$	
	$u^{2} + (v-1)^{2}$ $u^{2} + (v-1)^{2}$ 1 of e.g	$x^{2} + (y-1)^{2}$ $x^{2} + (y-1)^{2}$	
	or		A 1
	$z = \frac{-2uv + 2u(v-1) + (2u^2 + 2v(v-1))i}{2u^2 + 2v(v-1)i} \text{ or e.g}$	$z = \frac{-2xy + 2x(y-1) + (2x^2 + 2y(y-1))i}{2x^2 + 2y(y-1))i}$	AI
	$u^2 + (v-1)^2$	$x^2 + (y-1)^2$	
	Correct expression for z in terms of their v identified. May be embedded as	s above or stated explicitly.	
	$ z-2\mathbf{i} = z-3 \Rightarrow y-1 = \frac{3}{2} \left(x-\frac{3}{2}\right)$	$\left(y = \frac{3}{x} - \frac{5}{x}, 6x - 4y = 5 \right)$	
	$\Rightarrow \frac{2u^2 + 2v(v-1)}{2} - 1 = \frac{2}{2}$	$\frac{3}{2}\left(\frac{-2u}{2}-\frac{3}{2}\right)$	
	$u^2 + (v-1)^2$	$2\left(u^2+(v-1)^2 2\right)$	
	Attempts the Cartesian equation of the lo	cus of z and substitutes for x and y or equation in y and y (or their variables)	
	Condone slips with the locus of z but must b	be a linear equation in any form but with	
	a non-zero con	stant term.	dd M1
	or		
	$ z-2i = z-3 \Rightarrow \left \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2}\right $	$\mathbf{i} - 2\mathbf{i} = \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2}\mathbf{i} - 3$	
	$(2)^{2}(2u^{2}+2u(u-1))^{2}$	(2) (2)	
	$\Rightarrow \left(\frac{-2u}{u^2 + (v-1)^2} \right) + \left(\frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} - 2 \right) =$	$\left\{ \frac{-2u}{u^2 + (v-1)^2} - 3 \right\} + \left\{ \frac{2u + 2v(v-1)}{u^2 + (v-1)^2} \right\}$	
	Substitutes their z into the locus of z and an	oplies Pythagoras correctly to obtain an	
	equation in <i>u</i> and <i>v</i> (or their variables). Not	e that here, further progress is unlikely.	
	$13u^2 + 13v^2 + 12u - 18v + 5 = 0 \Longrightarrow$	$u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$	
	$\Rightarrow \left(u + \frac{6}{13}\right)^2 + \left(1\right)^2$	$\left(2 - \frac{9}{13}\right)^2 = \frac{4}{13}$	
	Attempts to complete the square on their ec	puttion in u and v where u^2 and v^2 have	dddM1
	the same coe	efficient.	
	Award for e.g. $u^2 + v^2 + \alpha u + \beta v +$	$\dots = \left(u + \frac{\alpha}{2}\right)^2 + \left(v + \frac{\beta}{2}\right)^2 + \dots = \dots$	

Attempts using the form $u^2 + v^2 + 2gu + 2fv + c = 0$ send to review.		
$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
		Total 8

(b)		Attempts to make z the subject.	
Way 2	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
		real and non-zero.	
	$ z-2\mathbf{i} = z-3 \Longrightarrow \left \frac{2w}{w-1}\right $	$\frac{\mathbf{i}}{\mathbf{i}} - 2\mathbf{i} = \left \frac{2w\mathbf{i}}{w - \mathbf{i}} - 3 \right $	
	$\Rightarrow \left \frac{2wi - 2wi - 2}{w - i} \right =$	$= \left \frac{2wi - 3w + 3i}{w - i} \right $	d M1
	Introduces <i>z</i> in terms of <i>w</i> into the given	locus and attempts to combine terms	
	$\left \frac{-2}{w-i}\right = \left \frac{2wi - 3w + 3i}{w-i}\right \Rightarrow$	-2 = 2wi - 3w + 3i	A1
	Correct equation with	fractions removed	
	$ 2(u+iv)i-3(u+iv)+3i =2 \Rightarrow ($	$(3u+2v)^{2} + (3v-2u-3)^{2} = 4$	dd M1
	introduces e.g. $w = u + iv$ and applies Pythagoras correctly		
	$13u^2 + 13v^2 + 12u - 18v + 9 = 4 \Longrightarrow$	$u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$	
	$\Rightarrow \left(u + \frac{6}{13}\right)^2 + \left(v - \frac{9}{13}\right)^2 = \frac{4}{13}$		
	Attempts to complete the square on their equation in u and v where u^2 and v^2 have		dddM1
	the same coefficient.		
	Award for e.g. $u^2 + v^2 + \alpha u + \beta v +$	$\dots = \left(u + \frac{\alpha}{2}\right)^2 + \left(v + \frac{\beta}{2}\right)^2 + \dots = \dots$	
	Attempts using the form $u^2 + v^2 + 2gu + 2fv + c = 0$ send to review.		
	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
			Total 8

(b) Way 3	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Attempts to make z the subject. Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
	$ z-2\mathbf{i} = z-3 \Rightarrow \left \frac{2w}{w-1}\right = \frac{ z-3 }{ w-1 } = \frac{ z-3 }{$	$\frac{ i-i }{ i-2i } = \frac{ 2wi-3w-3 }{ w-i }$ $= \frac{ 2wi-3w+3i }{ w-i }$ It is to combine terms	d M1
	$\frac{\left \frac{-2}{w-i}\right }{\left \frac{2wi-3w+3i}{w-i}\right } \Rightarrow$ Correct equation with	-2 = 2wi - 3w + 3i fractions removed	A1
	$\left w(2i-3) + 3i \right = \left (2i-3) \left(w + \frac{3i}{2i-3} \right) \right = \left 2i-3 \right \left w + \frac{6-9i}{13} \right = 2$ Attempts to isolate <i>w</i> and rationalise denominator of other term		dd M1
	$\sqrt{13} \left w - \left(-\frac{6}{13} + \frac{9}{13} i \right) \right = 2 \Rightarrow$ M1: Completes the process by A1: Correct equation in	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$ y dividing by their $ 2i - 3 $ n the required form	dddM1A1
			(6)

Question Number	Scheme	Notes	Marks
7(a)	Condone use of e.g. $C + iS$ for $\cos x + iS$	$-i\sin x$ if the intention is clear.	
	$(\cos 5x \equiv) \operatorname{Re}(\cos x + i \sin x)^5 \equiv \cos^5 x + \binom{5}{2} \cos^3 x (i \sin x)^2 + \binom{5}{4} \cos x (i \sin x)^4$ Identifies the correct terms of the binomial expansion of $(\cos x + i \sin x)^5$ They may expand $(\cos x + i \sin x)^5$ completely but there must be an attempt to extract the real terms which must have the correct binomial coefficients combined with the		M1
	$(\cos 5x \equiv)\cos^5 x - 10\cos^3 x$ Correct simplified expression. Condone	$\sin^2 x + 5\cos x \sin^4 x$ use of a different variable e.g. θ .	A1
	$\equiv \cos x \left(\cos^4 x - 10 \cos^2 x \right)$	$x\sin^2 x + 5\sin^4 x$	
	$\equiv \cos x \left(\left(1 - \sin^2 x\right)^2 - 10 \left(1 - \sin^2 x\right)^2 \right)^2$	$\sin^2 x \bigg) \sin^2 x + 5 \sin^4 x \bigg)$	M1
	Applies $\cos^2 x = 1 - \sin^2 x$ to obtain an expression in terms of sin x inside the bracket. Condone use of a different variable e.g. θ .		
	$\equiv \cos x \left(16\sin^4 x - 12\sin^2 x + 1 \right)$	Correct expression. Must be in terms of x now. The " $\cos 5x =$ " is not required.	A1
		Tequilea	(4)
(b)	Allow use of a different variable in (b) e.g. <i>x</i> for <u>all</u> marks.		
	$\cos 5\theta = \sin 2\theta \sin \theta - \cos \theta$ $\Rightarrow \cos \theta (16 \sin^4 \theta - 12 \sin^2 \theta + 1) = 2 \sin^2 \theta \cos \theta - \cos \theta$		
	$\Rightarrow \cos\theta (16\sin^4\theta - 14\sin^2\theta + 2) = 0$		IVI 1
	Uses the result from part (a) with $\sin 2\theta = 2\sin \theta \cos \theta$ and collects terms $16\sin^4 \theta - 14\sin^2 \theta + 2 = 0$		
	$\Rightarrow \sin^2 \theta = \frac{7 \pm \sqrt{17}}{16} \Rightarrow \sin \theta = \dots$ Solves for $\sin^2 \theta$ by any method including calculator and takes square root to obtain at least one value for $\sin \theta$. Depends on the first mark. May be implied by their values of $\sin \theta$ or θ . NB $\frac{7 \pm \sqrt{17}}{16} = 0.69519, 0.17980$ $\sin \theta = \sqrt{\frac{7 \pm \sqrt{17}}{16}} \Rightarrow \theta = \dots$ NB $\sqrt{\frac{7 \pm \sqrt{17}}{16}} = 0.833783, 0.424035$ A full method to reach at least one value for θ . Depends on the previous mark.		dM1
			ddM1
	$(\theta =) 0.986, 0.438$	Correct values and no others in range. Allow awrt these values.	A1
			(4) Total 8
			I ULAL O

Note that it is possible to do 7(b) by changing to $\cos \theta$ e.g.

$$\cos\theta \left(16\sin^4\theta - 12\sin^2\theta + 1\right) = \cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right)$$
$$\cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right) = 2\sin^2\theta\cos\theta - \cos\theta$$
$$16\cos^4\theta - 18\cos^2\theta + 4 = 0$$
$$\cos^2\theta = \frac{9 \pm \sqrt{17}}{16} \Rightarrow \cos\theta = \sqrt{\frac{9 \pm \sqrt{17}}{16}}$$
$$(\theta =)0.986, \ 0.438$$

This is acceptable as they used part (a) and can be scored as:

M1: Uses part (a) with $\sin^2 \theta = 1 - \cos^2 \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$ and collects terms.

dM1: Solves for $\cos^2 \theta$ by any method including calculator and takes square root to obtain at least one value for $\cos \theta$. Depends on the first mark. May be implied by their values of $\cos \theta$ or θ .

NB
$$\frac{9 \pm \sqrt{17}}{16} = 0.82019..., 0.30480...$$

dM1: A full method to reach at least one value for θ . Depends on the previous mark. May be implied by their values of θ

NB
$$\sqrt{\frac{9 \pm \sqrt{17}}{16}} = 0.0.743029..., 0.552092...$$

A1:
$$(\theta =) 0.986, 0.438$$

Question Number	Scheme	Notes	Marks
8 (a)	$y = r \sin \theta = (1 - \sin \theta) \sin \theta = \sin \theta - \sin^2 \theta$	Differentiates $(1 - \sin \theta) \sin \theta$ to	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta - 2\sin\theta\cos\theta$	achieve $\pm \cos \theta \pm k \sin \theta \cos \theta$ or equivalent. Use of $y = r \cos \theta$ or	M1
	or e.g.	$x = r \cos \theta$ scores M0	
	$\Rightarrow \frac{dy}{d\theta} = \cos\theta - \sin 2\theta$	Correct derivative in any form.	A1
	$\cos\theta - 2\sin\theta\cos\theta = 0 \Longrightarrow \cos\theta (1 - 2\sin\theta)$	$(n \theta) = 0 \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \dots$	dM1
	Solves to find a value for θ . De	epends on the first M.	
	$\left(\frac{1}{2},\frac{\pi}{6}\right)$		
	Correct coordinates and no others. Isw if nece	essary e.g. if written as $\left(\frac{\pi}{6}, \frac{1}{2}\right)$ after	A1
	correct values seen or implied award A	A1. Allow e.g. $\theta = \frac{\pi}{6}$, $r = \frac{1}{2}$.	
	The value of r must be seen in (a) – i.e	. do not allow recovery in (b).	
(b)	1 1 6		(4)
Way 1	Note that the $\frac{1}{2}$ in $\frac{1}{2} \int r^2 d\theta$ is not required for the first 4 marks		
	$\int (1-\sin\theta)^2 d\theta = \int (1-2\sin\theta + \sin^2\theta) d\theta$	Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies	M1
	$= \int \left(1 - 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta \right) \mathrm{d}\theta$	$\sin^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$	1411
	$\int (1 - \sin \theta)^2 d\theta = \frac{3}{2}\theta + 2\cos \theta - \frac{1}{4}\sin 2\theta (+c)$		
	Correct integration. Condone	mixed variables e.g.	A1
	$\int (1-\sin\theta)^2 d\theta = \frac{3}{2}x + 2\cos\theta - \frac{1}{4}\sin 2\theta(+c)$		
	$\left(\frac{1}{2}\right)\left[\frac{3}{2}\theta + 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \sqrt{3} - \frac{\sqrt{3}}{8}\right) - (2)\right]\left(=\frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1\right)$		
	Applies the limits of 0 and their $\frac{\pi}{6}$ to their integration. The $\frac{1}{2}$ is not required.		M1
	For the integration look for at least $\pm \int \sin\theta d\theta \to \pm \cos\theta$		
	Triangle: $\frac{1}{2} \times \frac{1}{2} \sin \frac{\pi}{6} \times \frac{1}{2}$	$\frac{\pi}{6} \left(= \frac{\sqrt{3}}{32} \right)$	M1
	Uses a correct strategy for the area of the triangle		

	Area of $R = \frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1 + \frac{\sqrt{3}}{32}$	Fully correct method for the required area. Depends on all previous method marks.	dM1
	$\frac{1}{32}(4\pi + 15\sqrt{3} - 32)$	cao	A1
			(6)
	1 1 6		Total 10
	Note that the $\frac{1}{2}$ in $\frac{1}{2}$ $\int r^2 d\theta$ is not r	equired for the first 3 marks	
(b) Way 2	$\int (1-\sin\theta)^2 d\theta = \int (1-2\sin\theta + \sin^2\theta) d\theta$	Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies	M1
	$= \int \left(1 - 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta\right) \mathrm{d}\theta$	$\sin^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta.$	1711
	$\int (1 - \sin \theta)^2 d\theta = \frac{3}{2}\theta + 2\cos \theta - \frac{1}{4}\sin 2\theta (+c)$		
	Correct integration. Condone	e mixed variables e.g.	A1
	$\int (1-\sin\theta)^2 d\theta = \frac{3}{2}x + 2\cos\theta - \frac{1}{4}\sin 2\theta(+c)$		
	$\left(\frac{1}{2}\right)\left[\frac{3}{2}\theta + 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{2}} = \left(\frac{1}{2}\right)\left[\left(\frac{3\pi}{4} + 0 - 0\right) - (2)\right]\left(=\frac{3\pi}{8} - 1\right)$		
	Evidence of use of both limits 0 and $\frac{\pi}{2}$ to their integration. The $\frac{1}{2}$ is not required.		M1
	For the integration look for at least $\pm \int \sin \theta d\theta \rightarrow \pm \cos \theta$ Triangle = "Segment":		
	Triangle – "Segment":		
	$\frac{1}{2} \times \frac{1}{2} \sin \frac{\pi}{6} \times \frac{1}{2} \cos \frac{\pi}{6} - \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 - \sin \theta)^2 \mathrm{d}\theta$		
	$\frac{\sqrt{3}}{32} - \frac{1}{2} \left[\frac{3}{2} \theta + 2\cos\theta - \frac{1}{4}\sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(= \frac{15\sqrt{3}}{32} - \frac{\pi}{4} \right)$		M1
	Uses a fully correct strategy for the area above the curve between <i>O</i> and <i>P</i> . Requires a correct method for the triangle as in Way 1 and a correct method for the		
	"segment" using both their $\frac{\pi}{6}$ and $\frac{\pi}{2}$.		
	Area of $R = \frac{3\pi}{8} - 1 + \frac{15\sqrt{3}}{32} - \frac{\pi}{4}$	Fully correct method for the required area. Depends on all previous method marks.	dM1
	$\frac{1}{32}(4\pi + 15\sqrt{3} - 32)$	cao	A1
			(6)

Question Number	Scheme	Notes	Marks
9(a)(i)	$x = t^{\frac{1}{2}} \Rightarrow \frac{dx}{dy} = \frac{1}{2}t^{-\frac{1}{2}}\frac{dt}{dy} \Rightarrow \frac{dy}{dx} = \dots \text{ or } t = x^2 \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \dots$ Applies the chain rule and proceeds to an expression for $\frac{dy}{dx}$		M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2t^{\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}t}$	Any correct expression for $\frac{dy}{dx}$ in terms of y and t	A1
(a)(ii)	$\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt} \Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{dy}{dt}$ dM1 : Uses the product rule to differentiate a equivalent e.g. $\frac{dy}{dt} =$	$t^{-\frac{1}{2}}\frac{dt}{dx} + 2t^{\frac{1}{2}}\frac{d^{2}y}{dt^{2}}\frac{dt}{dx}$ an equation of the form $\frac{dy}{dx} = kt^{\frac{1}{2}}\frac{dy}{dt}$ or $kx\frac{dy}{dt}$ to obtain	dM1A1
	$\frac{d^2 y}{dx^2} = \alpha t^{-\frac{1}{2}} \frac{dy}{dt} \frac{dt}{dx} + \dots \text{ or } \frac{d}{dt}$ <u>or equivalent expressions</u> A1 : <u>Any</u> correct expr	$\frac{d^2 y}{dx^2} = \dots + \beta t^{\frac{1}{2}} \frac{d^2 y}{dt^2} \frac{dt}{dx}$ where is non-zero ression for $\frac{d^2 y}{dx^2}$	
	$\frac{dy}{dt}t^{-\frac{1}{2}}\frac{dt}{dx} + 2t^{\frac{1}{2}}\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = \frac{dy}{dt}$ $\frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} +$ Correct expression in	$t^{-\frac{1}{2}} \times 2t^{\frac{1}{2}} + 2t^{\frac{1}{2}} \frac{d^2 y}{dt^2} \frac{dt}{dx}$ $4t \frac{d^2 y}{dt^2}$ terms of y and t	A1
			(5)
(b)	$x\frac{\overline{d^2 y}}{dx^2} - (6x^2 + 1)\frac{dy}{dx} + 9x^3y = x^5 \Longrightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt}\right)$	$+4t\frac{\overline{d^{2}y}}{dt^{2}}-(6t+1)2t^{\frac{1}{2}}\frac{dy}{dt}+9t^{\frac{3}{2}}y=t^{\frac{5}{2}}$	M1
	Substitutes their expressions from part (a) and replaces x with t^2		
	$2t^{\frac{1}{2}}\frac{dy}{dt} + 4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} - 12t^{\frac{3}{2}}\frac{dy}{dt}$	$-2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$	
	$\Rightarrow 4 \frac{d^2 y}{dt^2} - 12 \frac{dy}{dt}$	$+9y = t^*$	A1*
	Obtains the given answer with no errors and	sufficient working shown – at least one	
	intermediate line after substitu	ition but check working.	
	Must follow full marks in (a)) apart from SC below.	
			(2)

Special case in (a) and (b) for those who do not have (a) in terms of y and t only:

$$t = x^{2} \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \dots \text{ Scores M1. } \dots = 2x\frac{dy}{dt} \text{ scores A0 in (a)(i)}$$

$$\frac{dy}{dx} = 2x\frac{dy}{dt} \Rightarrow \frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} + 2x\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = 2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}} \text{ Scores dM1A1A0 in (a)(i)}$$

$$x\frac{d^{2}y}{dx^{2}} - (6x^{2}+1)\frac{dy}{dx} + 9x^{3}y = x^{5} \Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2x\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$$

$$\Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4t\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}} \Rightarrow 4\frac{d^{2}y}{dt^{2}} - 12\frac{dy}{dt} + 9y = t^{*} \text{ Scores M1A1 in (b)}$$

Mark (c) and (d) together

(c)	$4m^2 - 12m + 9 = 0 \Longrightarrow m = \frac{3}{2}$	Attempts to solve $4m^2 - 12m + 9 = 0$ Apply general guidance for solving a 3TQ if necessary.	M1
	$(y=)e^{\frac{3}{2}t}(At+B)$	Correct CF. No need for " $y =$ " Condone $(y =)e^{\frac{3}{2}x}(Ax + B)$ here but must be in terms of <i>t</i> in the GS. Allow equivalents for the $\frac{3}{2}$.	A1
	$(y =)at + b \Rightarrow \frac{dy}{dt} =$ $\Rightarrow -12a + 9(at)$	$a \Rightarrow \frac{d^2 y}{dt^2} = 0$ (t+b) = t	
	Starts with the correct PI form and differentic substitutes. NB starting with	iates to obtain $\frac{dy}{dt} = a$ and $\frac{d^2 y}{dt^2} = 0$ and h a PI of $y = at$ is M0	MI
	$9a = 1 \Longrightarrow a = \dots$ $9b - 12a = 0 \Longrightarrow b = \dots$	Complete method to find <i>a</i> and <i>b</i> by comparing coefficients. Depends on the previous method mark.	dM1
	$y = e^{\frac{3}{2}t} \left(At + B\right) + \frac{1}{9}t + \frac{4}{27}$	Correct GS including " $y =$ " and must be in terms of t (no x 's). Allow equivalent exact fractions for the constants.	A1
			(5)
(d)	$y = e^{\frac{3}{2}x^2} (Ax^2 + B)$ Correct equation including " $y =$ " (for Allow equivalent exact fractions for the cons be in terms of <i>t</i> and the answer to (d) should x^2 . If there is no final answer to (c) you can a terms of <i>x</i> if it follows the	$\frac{1}{9}x^{2} + \frac{4}{27}$ llow through their answer to (c)). tants. For the ft, the answer to (c) must be the same as (c) with <i>t</i> replaced with award B1ft if the equation is correct in he previous work.	B1ft
			Total 13

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom