

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Chemistry (WCH15)

Paper 01:Transition Metals and Organic

Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022

Question Paper Log Number P71873A

Publications Code WCH15_01_2210_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A (Multiple Choice)

Question	Answer	Mark
number		
1	The only correct answer isA(decreases; gains electrons)	(1)
	B is incorrect because nitrogen gains electrons	
	C is incorrect because the oxidation number of nitrogen decreases	
	D is incorrect because the oxidation number of nitrogen decreases and it gains electrons	

Question number	Answer	Mark
2	The only correct answer is D(100000 Pa)	(1)
	A is incorrect because the standard pressure is 1 atm not 1 Pa	
	B is incorrect because the standard pressure is 100 kPa not 100 Pa	
	C is incorrect because the standard pressure is 100000 Pa not 1000 Pa	

Question	Answer	Mark
number		
3(a)	The only correct answer is D(platinum and platinum)	(1)
	A is incorrect because neither chromium metal nor titanium metal are involved in the cell	
	B is incorrect because chromium metalis not involved in the cell	
	C is incorrect because titanium metalis not involved in the cell	

Question number	Answer	Mark
3(b)		(1)
3(0)	The only correct answer is C(+0.19 V)	(1)
	A is incorrect because the E^{Θ}_{cell} value has been added to the electrode potential of the $Cr_2O_7^{2-}$, Cr_3^{3+} electrode system rather than subtracted and the sign has been reversed.	
	B is incorrect because the sign has been reversed.	
	D is incorrect because the E°_{cell} value has been added to the electrode potential of the $Cr_2O_7^{2-}$, Cr^{3+} electrode system rather than subtracted	

Question number	Answer	Mark
4	The only correct answer is D(more positive; unchanged)	(1)
	A is incorrect because the E_{cell} values must be increasing and E_a values are not affected by concentrations.	
	B is incorrect because the E _{cell} values must be increasing	
	C is incorrect because E_a values are not affected by concentrations.	

Question	Answer	Mark
number		
5	The only correct answer is C(the only stable zinc ion has the electronic configuration [Ar] 3d ¹⁰)	(1)
	$m{A}$ is incorrect because the electronic configuration of the atom does not determine the classification	
	B is incorrect because while the formation of more than one type of ion is a characteristic of transition metals it does not determine the classification	
	D is incorrect because while catalytic properties are a characteristic of transition metals, they do not determine the classification	

Question	Answer	Mark
number		
6	The only correct answer is B	(1)
	$[\mathrm{Ar}] \hspace{.2cm} \uparrow \downarrow \hspace{.2cm} \uparrow \hspace{.2cm} \uparrow \hspace{.2cm} \uparrow \hspace{.2cm} \uparrow \hspace{.2cm} \downarrow$	
	A is incorrect because both 4s electrons are removed when the $Fe2+$ ion is formed from the Fe atom	
	$m{C}$ is incorrect because both 4s electrons are removed when the Fe2+ ion is formed from the Fe atom	
	D is incorrect because electrons occupy a subshell with the maximum possible number of unpaired electrons	

Question	Answer	Mark
number		
7	The only correct answer is A(structure X only)	(1)
	B is incorrect because only the cis isomer is used	
	C is incorrect because $Pt(NH_3)_2Cl_2$ is square planar	
	D is incorrect because only the cis isomer is used	

Question	Answer	Mark
number		
8	The only correct answer is A(bonds reversibly to an iron(II) ion)	(1)
	B is incorrect because the reaction is reversible	
	C is incorrect because the iron(II) ion is not replaced	
	D is incorrect because the iron(II) ion is not replaced and the reaction is reversible	

Question number	Answer	Mark
9	The only correct answer is C(the oxidation of Ti ⁺ is catalysed by Ag ⁺ ions)	(1)
	B is incorrect because Ag^+ is unchanged at the end of the sequence while the Ti^{2+} ions are formed from Ti^+ then further oxidised to Ti^{3+}	
	D is incorrect because Ag^{2+} ions are formed and removed in the reaction	

Question	Answer	Mark
number		
10	The only correct answer is $C(12 (\sigma bonds) 3 (\pi bonds))$	(1)
	\boldsymbol{A} is incorrect because this does not include the $C-H$ bonds	
	B is incorrect because this does not include the C–H bonds and counts all the C–C bonds asboth σ bonds and π bonds	
	D is incorrect because this counts all the $C-C$ bonds as both σ bonds and π bonds	

Question	Answer	Mark
number		
11	The only correct answer is D(concentrated sulfuric acid containing dissolved sulfur trioxide)	(1)
	A is incorrect because fuming sulfuric acid contains dissolved sulfur trioxide	
	B is incorrect because fuming sulfuric acid contains dissolved sulfur trioxide	
	C is incorrect because fuming sulfuric acid contains dissolved sulfur trioxide	

Question	Answer	Mark
number		
12(a)	The only correct answer is B(2-amino-3-methylpentanoic acid)	
	A is incorrect because the longest carbon chain has five atoms	
	<i>C</i> is incorrect because the longest carbon chain has five atoms and the carbon chain is numbered from the acid group	
	D is incorrect because the carbon chain is numbered from the acid group	

Question number	Answer	Mark
12(b)	The only correct answer is B NH NH 3	(1)
	A is incorrect because this structure will occur at alkaline pH	
	<i>C</i> is incorrect because the amine group will protonate in preference to the carboxylic acid group at this pH.	
	D is incorrect because this zwitterion will occur at neutral pH	

Question	Answer	Mark
number		
13	The only correct answer is B(CH ₃ CH ₂ CH ₂ CH ₂ NH ₃ Cl)	(1)
	A is incorrect because substitution does not occur in these conditions	
	C is incorrect because an amide does not form in this way	
	D is incorrect because a carboxylic acid does not form in these conditions	

Question number	Answer	Mark
14		(1)
	The only correct answer is C(butanenitrile; lithium tetrahydridoaluminate(III))	
	A is incorrect because propanenitrile would give propylamine	
	B is incorrect because propanenitrile would give propylamineand tin with HCl does not reduce nitriles	
	D is incorrect because tin with HCl does not reduce nitriles	

Question number	Answer	Mark
15	The only correct answer is A	(1)
	B is incorrect because the methyl group cannot form part of the polymer chain	
	C is incorrect because the peptide link cannot form from an amide group	
	D is incorrect because the methyl group cannot form part of the polymer chain and the peptide link cannot form from an amide group	

Question	Answer	Mark
number		
16	The only correct answer is A(four)	
	B is incorrect because onlythe ring carbon atomshave been considered and symmetry has been ignored	
	C is incorrect because the ring symmetry has been ignored	
	D is incorrect because this is just the total number of carbon atoms	

Question	Answer	Mark
number		
17	The only correct answer is C(cocaine less soluble; cocaine higher pH)	
	A is incorrect because carboxylic acids are more soluble than esters	
	B is incorrect because carboxylic acids are more soluble and more acidic than esters	
	D is incorrect because carboxylic acids are more acidic than esters	

Question number	Answer	Mark
18	The only correct answer is B(soluble (at high temperature); insoluble (at low temperature)	
	Ais incorrect because the hot filtration removes the insoluble impurities	
	<i>C</i> is incorrect because the hot filtration removes the insoluble impurities and the cold filtration separates the soluble impurities	
	D is incorrect because the hot filtration removes the insoluble impurities	

Total for Section A = 20 marks

Section B $\label{eq:Donot Pv = NRT}$ Do not penalise case errors e.g. CO for Co and Pv = NRT

Question number	Answer	Additional guidance	Mark
19(a)	An explanation that makes reference to the following		3
	• +5 (1)	Allow 5+ / 5 / +V / V / V ⁵⁺	
	• vanadium has 3 (unpaired) electrons in the (3)d subshell and 2 electrons in the 4s (orbital / subshell) (1)	Accept electronic configuration of V is [Ar]3d³ 4s² / [Ar]4s² 3d³ / 'electrons in boxes' Ignore errors in [Ar] configuration Do not award incorrect electronic configurations of 3d and 4s	
	• the total number of 3d and 4s electrons gives the highest (stable) oxidation state (1)	Allow electronic configuration of V ⁵⁺ shown if electronic configuration of V given for M2	
		Allow vanadium has 5 electrons in its valence shell Allow vanadium has 5 outer electrons	
		Allow loss of 5 electrons from electronic configuration [Ar] 3d ⁵	
		Do not award 'orbit' for orbital / shell / subshell	
		No TE on other incorrect electronic configurations Ignore reference to stability of V ⁵⁺ Ignore just 'loses 5 electrons'	

Question number	Answer	Additional guidance	Mark
19(b)(i)	A justification that makes reference to the following		4
	• equation for reaction of thiosulfate ions and VO ²⁺ (1)	$2VO^{2+} + 4H^{+} + 2S_{2}O_{3}^{2-} \rightleftharpoons 2V^{3+} + S_{4}O_{6}^{2-} + 2H_{2}O$	
	• equation for reaction of thiosulfate ions and V^{3+} (1)	$2V^{3+} + 2S_2O_3^{2-} \rightleftharpoons 2V^{2+} + S_4O_6^{2-}$	
		Penalise incorrect balancing once only. Penalise uncancelled species (including e ⁻) once only Four correct half-equations scores (1)	
	• calculation of first E_{cell} value (using correct half – equations) and (positive E_{cell} value indicates) reduction to V^{3+} feasible (1)	Do not award use of S ₂ O ₃ ²⁻ / S half-equation $E_{\text{cell}} = 0.34 - 0.09 = (+)0.25(\text{V})$	
	• calculation of second E_{cell} value and (negative E_{cell} value indicates) further reduction (to V^{2+}) not feasible (1)	$E_{\text{cell}} = -0.26 - 0.09 = -0.35(\text{V})$	
		Allow 1 mark for both E_{cell} values calculated without explanation Ignore state symbols even if not correct No TE on incorrect ionic half-equations	

Question	Answer	Additional guidance	Mark
number			
19(b)(ii)	An explanation that makes reference to the following		2
	• Electrode potential for Ni Ni ²⁺ is very close to $V^{2+} V^{3+}$ (1)	Accept $E_{\text{cell}} = -0.26 - (-0.25) = -0.01(\text{V})$	
		Allow E_{cell} close to zero /(only) 0.01 V difference	
	Some reduction of V ³⁺ will occur and	Allow Some reduction of V ³⁺ will occur and	
	although E_{cell} is negative (1)	$Ni + 2V^{3+} \Rightarrow Ni^{2+} + 2V^{2+} / \text{ equilibrium formed}$	
		Allow Some reduction of V^{3+} will occur and if conditions are not standard /conditions are changed	
		Ignore just 'V ³⁺ reduced' Ignore just 'nickel is a strong(er) reducing agent'	

Question	Answer	Additional guidance	Mark
number			
19(c)(i)	An answer that makes reference to the following		1
	• pale pink	Allow just 'pink' Do not award purple / red Ignore reference to the colour before the end-point	

Question	Answer	Additional guidance	Mark
number			
19(c)(ii)	An answer that makes reference to the following		2
	• Because MnO ₄ ⁻ ions have more positive standard electrode potential than VO ²⁺ , VO ²⁺ should be oxidised using up MnO ₄ ⁻ (1)	Accept $E_{\text{cell}} = 1.51 - 1.00 = +0.51(\text{V})$	
	• so reaction rate must be slow or	Allow conditions not standard	
	activation energy is high (1)		
		Allow MnO ₄ ⁻ can oxidise VO ²⁺ to VO ₃ ⁻ (reaction ratio 1:5) (1)	
		Then VO ₃ ⁻ will oxidise Fe ²⁺ to Fe ³⁺ and Overall this is equivalent to MnO ₄ ⁻ oxidising Fe ²⁺ to Fe ³⁺	
		Ignore reference to catalysis (1)	

uestion number	Answer		Additional guidance	Mark
19(c)(iii)	calculation of moles of manganate(VII) in mean titre	(1)	Example of calculation $mol MnO_4^- = \frac{22.50 \times 0.0195}{1000}$ $= 4.3875 \times 10^{-4} / 0.00043875$	7
	• calculation of moles of Fe ²⁺ in 25 cm ³ after reaction	(1)	mol Fe ²⁺ in 25 cm ³ = 5 x mol MnO ₄ ⁻ = $2.1938 \times 10^{-3} / 0.0021938$	
	• calculation of moles of Fe ²⁺ in 25 cm ³ at start	(1)	mol Fe ²⁺ in 25 cm ³ = $\frac{25.00 \times 0.250}{1000}$ = 6.25 x 10 ⁻³ / 0.00625	
	• calculation of mol Fe ²⁺ that reacted in 25 cm ³	(1)	$6.25 \times 10^{-3} - 2.1938 \times 10^{-3} = 4.0562 \times 10^{-3}$	
	• mol Fe ²⁺ = mol VO ₃ ⁻ ions (stated or implied) and scales VO ₃ ⁻ ions to 250 cm ³	(1)	mol VO ₃ ⁻ⁱⁿ 250 cm ³ = $10 \times 4.0562 \times 10^{-3}$ = 4.0562×10^{-2}	
	• calculation of mass of vanadium	(1)	mass of $V = 50.9 \times 4.0562 \times 10^{-2}$ = 2.06463(g) [using unrounded values]	
	calculation of percentage vanadium in ferrovanadium	(1)	% vanadium = $\frac{100 \times 2.06463}{4.87}$	
	If formula mass of VO ₃ ⁻ (98.9) is used instead of A_r of vanadium, mass = 98.9 × 4.0562 x 10 ⁻² = 4.0116 (g) percentage = 100 × 4.0116 ÷ 4.87 = 82.373(%) scores (6)		= 42.395% [using unrounded values] = 42.4 % TE provided some attempt to use titration data to calculate mass and % < 100	
	If M3 and M4 omitted % = 100 x 0.021938 x 50.9 ÷ 4.87 = 22.939(%) scores (5)		Ignore SF except 1 SF Correct answer with some working scores (7) Do not penalise correct rounding of intermediate values	

Question number	Answer	Additional guidance	Mark
19(d)	An answer that makes reference to the following	Examples of equations	2
	balanced equation showing the reduction of vanadium(V) oxide by sulfur dioxide (1)	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$	
	balanced equation showing the oxidation of vanadium species formed by reduction back to vanadium(V) oxide (1)	$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ Ignore uncancelled SO ₃	
		Allow for 2 marks any balanced equations showing formation of a lower oxidation state oxide by reaction with SO ₂ then a higher oxidation state by reaction with O ₂	
		Penalise error in formula of intermediate (e.g. V ₂ O ₄ ⁻) once only	
		Two balanced equations showing oxidation by O ₂ followed by reduction by SO ₂ scores (1)	
		Allow multiples Ignore state symbols even if incorrect	

Total for Question 19 = 21marks

Question number	Answer		Additional guidance	Mark
*20	-	kages and fully sustained ontent and for how the answer is ning.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	6
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning Answer has no linkages between points and is unstructured	Number of marks awarded for structure of answer and sustained lines of reasoning 2	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. If there is incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	

Question number	Answe	er	Additional guidance	Mark
20 continued	Indica	tive content	Accept structures for names throughout Do not penalise unbalanced / incomplete / incorrect equations If name and formula given both must be correct	6
	IP1	(the π electrons of) both benzene and cyclohexene attract / react with electrophiles (similarity)	Allow both benzene and cyclohexene form carbocation (intermediates) Do not award nucleophilic reactions	
	IP2	delocalised (π) electron ring in benzene is (very)stable	Allow delocalised (π) electrons make benzene stable If neither IP1 or IP2 given, allow an IP for benzene has delocalised electrons but cyclohexene does not.	
	IP3	so benzene undergoes (electrophilic) substitution whereas cyclohexene undergoes (electrophilic) addition	Allow benzene forms bromobenzene and cyclohexene forms 1,2-dibromocyclohexane. Do not award nucleophilic reactions	
	IP4	both benzene and phenol undergo (electrophilic) substitution (similarity)	Allow benzene forms bromobenzene and phenol forms 2,4,6-tribromophenol	
	IP5	the lone pair of electrons on the oxygen in phenol interacts with / overlaps the delocalised (π) electron system of the benzene ring	Allow the lone pair of electrons on the oxygen in phenol increases the electron density of the (benzene) ring	
	IP6	phenol reacts (with electrophiles) much faster / under much milder conditions / does not require a catalyst / has a lower activation energy / $E_{\rm a}$	Accept benzene requires a halogen carrier / catalyst Allow AlBr ₃ / AlCl ₃ / FeBr ₃ / Fe & Br ₂ Ignore just 'bromine reacts more easily with phenol than with benzene' / 'phenol is more susceptible to electrophilic attack'	

Question number	Answer	Additional guidance	Mark
21(a)(i)		Example of calculation	4
	• rearrangement of the ideal gas equation (IGE)	$pV = nRT = \frac{m \times R \times T}{M} M = \frac{m \times R \times T}{p \times V}$	
	• conversion of temperature to Kelvin ($T = 185 + 273 \ (= 458 \ \text{K})$	
	• conversion of volume of vapour to m ³ ($V = 67.1 \div 1 \times 10^6 = 6.71 \times 10^{-5} \text{ (m}^3\text{)}$	
	• solve IGE for M ($M = \frac{0.235 \times 8.31 \times 458}{105000 \times 6.71 \times 10^{-5}} = 126.95 / 127 \text{ (g mol}^{-1)}$	
	Alternative method	TE on incorrect conversions for M4	
	• rearrangement of the ideal gas equation (IGE)	$pV = nRT n = \frac{pV}{RT}$	
	• conversion of temperature to Kelvin ($T = 185 + 273 \ (= 458 \ \text{K})$	
	• conversion of volume of vapour to m ³ ($V = 67.1 \div 1 \times 10^6 = 6.71 \times 10^{-5}$	
	• solve IGE for M ($n = \frac{105000 \times 6.71 \times 10^{-5}}{8.31 \times 458} = 1.8512 \times 10^{-3}$	
		$M = \frac{0.235}{1.8512 \times 10^{-3}} = 126.947 / 126.9 / 127 (g \text{ mol}^{-1})$	
		Use of 1.85 gives 127.03 Allow units of g or no units Allow conversion of pressure to kPa & volume to dm ³ Correct answer with no working scores zero	

各种国际课程资料都有,

全网最全

请加微信: CLASS0608

Question number	Answer	Additional guidance	Mark
21(a)(ii)	An answer that makes reference to the following points:		2
	• calculation of the molar mass of the ring structure of coniine (1)	the molar mass of ring = $5 \times 12 + 14 + 10 \times 1$ = 84 g mol^{-1}	
	• calculation of the molar mass of R and	the molar mass of $R = 127 - 84 = 43 \text{ (g mol}^{-1}\text{)}$	
	deduction of the molecular formula of R (1)	R is C ₃ H ₇ (only possible alkyl group formula for molar mass = 43 (g mol ⁻¹))	
		Allow structural formulae e.g. –CH ₂ CH ₂ CH ₃	
		Allow this mark if the formula is given in (b)(i) TE on incorrect molar mass of ring provided R	
		contains C and H only	

Question number	Answer	Additional guidance	Mark
21(b)(i)	An answer that makes reference to the following points:		3
	• identification of the two possible R structures (1)	-CH ₂ CH ₂ CH ₃ and -CH(CH ₃) ₂ Do not award if additional structures are given	
	• -CH ₂ CH ₂ CH ₃ has three proton environments (as all three are different) (1)	Accept the peak areas show that the environments have 2, 2 and 3 protons as in -CH ₂ CH ₂ CH ₃	
	• -CH(CH ₃) ₂ has two proton environments (because the methyl groups are equivalent) (1)	Accept –CH(CH ₃) ₂ would have peak areas 1 and 6 If no other mark is scored identifying R as - CH ₂ CH ₂ CH ₃ with any valid reason based on the NMR data, scores (1)	
		No TE if R not given as an alkyl group e.g. CH ₃ CO	

Question number	Answer	Additional guidance	Mark
21(b)(ii)	An answer that makes reference to the following points: • proton environment 1 (has 3 protons and) will be a triplet (1) • proton environment 3 (has 2 protons and) will be a quartet (1)	May be shown on a diagram	3
	 Either proton environment 1(is a triplet because it) is adjacent to a CH₂ in the chain or as proton environment 3(is a quartet because it) is adjacent to a CH in the ring and to a CH₂ in the chain (1) 	Allow there are 2 adjacent protons Allow there are 3 adjacent protons M3 dependent on correct splitting pattern(s)	

Question number	Answer	Additional guidance	Mark
21(c)	An explanation that makes reference to the following points: EITHER • identification of the asymmetric carbon atom in coniine (1)	asymmetric carbon	2
	the molecule is non-superimposable on its mirror image and hence coniine shows optical isomerism (1)	Ignore incorrect alkyl groups Allow carbon atom is attached to four different groups and hence coniine shows optical isomerism OR Allow carbon atom is chiral and coniine shows optical isomerism Do not award four different 'molecules'	
	OR	Diagram showing the two enantiomers and a mirror plane scores M1 and M2 (dots and wedge not required)	
	 There is not free rotation around the N–C(–R) bond (because of the ring) (1) Coniine shows cis-trans / E-Z / geometrical isomerism and because the lone pair on N leads to the H having two possible orientations (1) 	This diagram including the mirror plane but without H shown (and chiral carbon unlabelled) scores (1)	

Total for Question 21 = 14 marks

Question number	Answer	Additional g	guidance	Mark
22(a)		Example of o	calculation	4
	• equating of % water with mass in 1 mol of viridian (19.15% of 1	mol of viridian weighs 36 g	
	calculation of molar mass of viridian	and	dian weighs 100 x 36 ÷ 19.15 (g)	
		molar mass =	$= (100 \times 36 \div 19.15) = 188 \text{ (g mol}^{-1})$	
	• calculation of molar mass of metal oxide (molar mass =	$= 188 - 36 = 152 \text{ (g mol}^{-1}\text{)}$	
	• calculation of molar mass of metal and	molar mass o	of metal = $\frac{1}{2}(152 - 3 \times 16) = 52 \text{ (g mol}^{-1})$	
	deduction of its identity	element is ch	nromium / Cr	
		TE at each st	tage	
			ver with some working scores (4)	
		Correct answ	ver with no working (0)	

Question	Answer	Additional guidance	Mark
number			
22(b)(i)	An answer that makes reference to		1
	ligand exchange / ligand replacement / ligand substitution		

Question number	Answer	Additional guidance	Mark
22(b)(ii)	An answer that makes reference to	Allow omission of square brackets Ignore extra brackets e.g. [Co(Cl) ₄] ²⁻	2
	• Full formula of one complex (1)	$[Co(H_2O)_6]^{2+}$ or $[CoCl_4]^{2-}$	
	• completion of full balanced ionic equation (1)	$[\text{Co}(\text{H}_2\text{O})_6]^{2^+} + 4\text{Cl}^- \rightarrow [\text{CoCl}_4]^{2^-} + 6\text{H}_2\text{O}$ Ignore state symbols even if incorrect	

Question number	Answer	Additional guidance	Mark
22(b)(iii)	An explanation that makes reference to the following points		2
	• (the aqua complex is octahedral and) chloro complex of cobalt / tetrachlorocobaltate(II) / CoCl ₄ ²⁻ is tetrahedral (1)	Allow octahedral (complex) changes to tetrahedral (complex) Allow the complex formed is tetrahedral	
	• because chloride ions / Cl ⁻ are too large for six ions to coordinate around the cobalt(II) ion / Co ²⁺ (1)	Do not award Cl / chlorine atoms / molecules If no other mark is scored, chloride ions / Cl ⁻ are larger than H ₂ O scores (1) [Both species needed] If no other mark is scored, coordination number	
		changes from 6 to 4 scores (1) Ignore just 'chloride ions / Cl ⁻ are larger'	

Total for Question 22 = 9 marks Total for Section B = 50 marks

Section C

Question number	Answer					Additional guidance	Mark
23(a)						Example of calculation	4
	working out molecu	ular formula			(1)	C ₁₃ H ₁₈ O ₇ (Accept numbers of C, H and O indicated in calculation)	
	• calculation of mola	r mass			(1)	286	
	calculation of perce	entage by mas	ss of one e	lement	(1)	% by mass of carbon = 100 x 13 x 12 ÷ 286 = 54.545	
careatation of percentage by mass of other elements (1)					% by mass of hydrogen = 100 x 18 x 1 ÷ 286 = 6.294 and		
	Some common inco	orrect answers	s (score (3)))		% by mass of oxygen = 100 x 7 x 16 ÷ 286 or	
	Formula M _r	%C	%Н	%O		% by mass of oxygen = 100 - (54.545 + 6.2937)	
	C ₁₃ H ₁₀ O ₇ 278		3.60	40.29		= 39.161	
	C ₁₃ H ₁₁ O ₇ 279		3.94	40.14	_		
	C ₁₃ H ₁₃ O ₇ 281		4.63	39.86	4	TE at each stage	
	C ₁₃ H ₁₇ O ₇ 285 C ₁₃ H ₂₀ O ₇ 288		5.96 6.94	39.30 38.89	+	Ignore SF except 1 SF	
	C ₁₃ H ₂₃ O ₇ 291		7.90	38.49	\dashv	Ignore of encept I of	
	C ₁₃ H ₂₄ O ₇ 292		8.22	38.36	1 L		

Question number	Answer		Additional guidance	Mark
23(b)(i)	An answer that makes reference to the following		Standalone marks	2
	a suitable oxidising agent	(1)	sodium dichromate(VI) / Na ₂ Cr ₂ O ₇ / potassium dichromate(VI) / K ₂ Cr ₂ O ₇	
	• sulfuric acid / H ₂ SO ₄		Allow dichromate(VI) / Cr ₂ O ₇ ² – Ignore omission of oxidation state but, if given, oxidation state must be correct	
	and (heat under) reflux	(1)	Allow acid / acidified / H ⁺ / H ₃ O ⁺ Ignore concentration of the acid Do not award other acids Do not award other solvents / reagents If name and formula are given both must be correct.	

Question number	Answer	Additional guidance	Mark
23(b)(ii)	An answer that makes reference to the following		2
	• salicylaldehyde needs to be distilled / separated (from the reaction mixture to prevent its further oxidation) (1)		
	EITHER		
	• (because) at high temperatures salicylaldehyde will be oxidised (to salicylic acid / carboxylic acid) (1)	Allow salicylaldehyde is more easily oxidised than salicyl alcohol Allow oxidation of salicylaldehyde is fast	
	 OR (because) its high boiling temperature means that salicylaldehyde cannot be easily be separated as the other components of the mixture have lower / similar 	Allow salicylaldehyde is hard to separate from the mixture	
	boiling temperatures (1)	If no other mark is scored, salicylaldehyde / salicyl alcohol will be oxidised to salicylic acid / carboxylic acid scores (1)	

Answer	Additional guidance	Mark
	Example of equation	1
• equation showing formation of electrophile	O Allow Structural formulae Allow CO + HCl + AlCl ₃ \rightarrow HCO ⁺ + AlCl ₄ Allow CO + HCl \rightarrow HCO ⁺ + Cl ⁻	
		• equation showing formation of electrophile O CI H AlCl ₃ Allow Structural formulae Allow CO + HCl + AlCl ₃ AlCl ₄ AlCl ₄ AlCl ₄ AlCl ₄ AlCl ₄ AlCl ₄

Question number	Answer	Additional guidance	Mar k
23(c)(ii)	A mechanism showing the following	Example of mechanism	3
	• curly arrow from on or within the circle to the positively charged carbon (1)	Allow curly arrow from anywhere in the hexagon Allow arrow to positive charge provided the charge is on the C atom TE on any correct electrophile formed in (c)(i)	
	• intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe (1)	H	
	curly arrow from C—H bond to anywhere in the benzene ring reforming delocalised structure and giving benzaldehyde (1) Ignore use of AlCl ₄ ⁻ in mechanism	Allow TE on any electrophile from (c)(i) Correct Kekule mechanism scores (3) Ignore connectivity of undisplayed CHO in M2 and M3	

Question number	Answer		Additional guidance	Mark
23(d)	An answer that makes reference to the following points:		Penalise use of Cl or I in Grignard once only	4
	 reagent and conditions for the formation of the Grignard reagent 	(1)	Reaction of bromoethane with magnesium (powder) in (dry) ether (under reflux) Ignore heat	
	identification of Grignard reagent	(1)	CH ₃ CH ₂ MgBr / ethyl magnesium bromide	
	addition product of reaction between salicylaldehyde and Grignard reagent	(1)	ОН	
	identification of a suitable dehydrating reagent	(1)	Ignore reference to hydrolysis of the Grignard intermediate (conc) phosphoric((V)) acid / H ₃ PO ₄ / (conc) sulfuric acid / H ₂ SO ₄ Do not award dilute acids Allow conversion of OH to halogen using a suitable reagent (e.g. PCl ₅) and Dehydrohalogenation using alcoholic KOH / NaOH	

Question number	Answer	Additional guidance	Mark
23(e)(i)	A diagram showing	Example of diagram	2
	nickel(II) ion coordinated to the two oxygen and two nitrogen atoms of the salen ligand (1)	N Ni 24	
	at least one dative covalent bond from an oxygen or a nitrogen to the nickel (II) ion in any structure involving one salen ligand (1)	Accept charge shown over whole structure Ignore omission of C=N double bond Allow 'dative /coordinate (covalent) bond' stated provided complex structure is involves a salen ligand and at least one O—Ni ²⁺ or N—Ni ²⁺ bond is shown Penalise incorrect connectivity of OH with Ni ²⁺ only in M2. If two OH groups are shown, both must be correctly connected to the Ni ²⁺	

Question	Answer	Additional guidance	Mark
number			
23(e)(ii)	An answer that makes reference to the following points:	Standalone marks	2
	• converting the aqua complex to the salen ligand complex results in an increase in the number of particles (in solution) (1)	Allow 'molecules' for 'particles'	
	• (thus) the entropy of the system increases / ΔS_{system} is positive (1)	Accept ΔS_{system} increases	
		Ignore just 'entropy increases'	
		If no other mark is scored balanced equation (1)	

(Total for Question 24 = 20 marks)
TOTAL FOR SECTION C = 20 MARKS