

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question Paper Log Number P64626A Publications Code WCH14_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Correct Answer	Mark
Number		
1	The only correct answer is D (SO ₂)	1
	A is incorrect as although it has four atoms, it has ten electrons	
	B is incorrect as it has two atoms and two electrons	
	C is incorrect as it has two atoms and only fourteen electrons	

Question Number	Correct Answer	Mark
2	The only correct answer is A (– 198.8)	1
	B is incorrect as number of moles of NH ₃ and H ₂ have not been considered	
	C is incorrect as number of moles of NH ₃ and H ₂ have not been considered and the expression to find the standard entropy of the system is the wrong way round	
	D is incorrect as expression to find the standard entropy of the system is the wrong way round	

Question	Correct Answer	Mark
Number		
3	The only correct answer is C (enthalpy change of formation of Na ₂ SO ₄)	1
	A is incorrect as lattice energy is used to find the enthalpy change of solution	
	B is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution	
	D is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution	

Question	Correct Answer	Mark
Number		
4 (a)	The only correct answer is C (0.1 mol dm ⁻³ HCl)	1
	A is incorrect as final pH would be greater than 2 (weak acid)	
	B is incorrect as final pH would be greater than 2 (weak acid)	
	D is incorrect as final pH would be less than 1 (strong acid)	

Question Number	Correct Answer	Mark
4 (b)	The only correct answer is A (NH ₃)	1
	B is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	
	C is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	
	D is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	

Question Number	Correct Answer	Mark
4 (c)	The only correct answer is C (3)	1
	A is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	
	B is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	
	D is incorrect as methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	

Question Number	Correct Answer	Mark
5	The only correct answer is D (S _N 1 ; Two steps in mechanism)	1
	A is incorrect as the halogenoalkane is tertiary so mechanism would be S_N 1 which has two steps	
	B is incorrect as although the mechanism has two steps the halogenoalkane is tertiary so mechanism would be $S_N 1$	
	C is incorrect as although the mechanism is S_N1 , it would have two steps	

Question Number	Correct Answer	Mark
6	The only correct answer is D (Step 2 is the rate determining step, the overall order is 3)	1
	A is incorrect as Step 3 is fast	
	B is incorrect as Step 3 is fast	
	C is incorrect as the overall order is 3	

Question Number	Correct Answer	Mark
7	The only correct answer is C (– gradient x <i>R</i>)	1
	A is incorrect the Arrhenius equation has been rearranged incorrectly	
	B is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy	
	D is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy	

Question Number	Correct Answer	Mark
8 (a)	The only correct answer is C (3)	1
	T OH	
	A is incorrect as menthol has 3 chiral carbon atoms	
	B is incorrect as menthol has 3 chiral carbon atoms	
	D is incorrect as menthol has 3 chiral carbon atoms	

Question Number	Correct Answer	Mark
8 (b)	The only correct answer is B (Q)	1
	A is incorrect as this carbon would produce a peak between 0 and 60 ppm	
	C is incorrect as this carbon would produce a peak between 0 and 60 ppm	
	D is incorrect as this carbon would produce a peak between 0 and 60 ppm	

Question Number	Correct Answer	Mark
8 (c)	The only correct answer is B (Two)	1
	A is incorrect as the oxidation product is a ketone, so would not react with PCI₅	
	C is incorrect as the oxidation product is a ketone, so would not react with Fehling's solution	
	D is incorrect as the oxidation product is a ketone, so would not react with PCI₅ but would react with 2,4- dinitrophenylhydrazine	

Question Number	Correct Answer	Mark
9 (a)	The only correct answer is B	1
	A is incorrect as the repeat unit has an extra oxygen	
	C is incorrect as there is an extra carbon at the left-hand end of the repeat unit	
	D is incorrect as the repeat unit has an extra oxygen and the structure is incorrect	

Question Number	Correct Answer	Mark
9 (b)	The only correct answer is B (hydrolysis)	1
	A is incorrect as condensation is the reaction when the polymer forms	
	C is incorrect as hydration is the addition of water to a C=C bond	
	D is incorrect as hydrogen has not been added in a reduction reaction	

Question Number	Correct Answer	Mark
10	The only correct answer is D (CH ₃ COCl)	1
	A is incorrect as the reaction with ketone would NOT form an N-substituted amide	
	B is incorrect as any reaction with the carboxylic acid would be too slow at RT	
	<i>C</i> is incorrect as any reaction with the ester would be too slow at RT	

Question Number	Correct Answer	Mark
11(a)	The only correct answer is B (68 mm)	1
	A is incorrect as it is a factor of 10 to large	
	C is incorrect as it is the distance moved by the amino acids	
	D is incorrect as it is the expression for R _f has been inverted	

Question	Correct Answer	Mark
Number		
11 (b)	The only correct answer is A (argon)	1
	B is incorrect as the carrier gas must be inert	
	C is incorrect as the carrier gas must be inert	
	D is incorrect as the carrier gas must be inert	

Question Number	Correct Answer	Mark
12	The only correct answer is C $H = \begin{pmatrix} H \\ H \\ H \end{pmatrix} = \begin{pmatrix} H \\ H \\ H \end{pmatrix} = \begin{pmatrix} H \\ H \\ H \end{pmatrix}$	1
	A is incorrect as the molar mass to 4 dp is 44.0265	
	B is incorrect as the molar mass to 4 dp is 44.0265	
	D is incorrect as the molar mass to 4 dp is 43.9898	

Question Number	Correct Answer	Mark
13	The only correct answer is D (8)	1
	A is incorrect as the number of optical isomers = 2^n , where $n = number$ of chiral centres	
	B is incorrect as the number of optical isomers = 2^n , where $n =$ number of chiral centres	
	C is incorrect as the number of optical isomers = 2^n , where $n =$ number of chiral centres	

Question Number	Correct Answer	Mark
14	The only correct answer is D (Structure D)	1
	A is incorrect as it is identical to B and C	
	B is incorrect as it is identical to A and C	
	C is incorrect as it is identical to A and B	

(Total for Section A = 20 marks)

Section **B**

Question Number				Mark
15 (a)			Example of calculation	2
	• correct expression for $\Delta S_{surroundings}$	(1)	$-\Delta H \div T = -25.7 \div 298$	
		– 0.086242 kJ K ⁻¹ mol ⁻¹ / – 86.242 J K ⁻¹ mol ⁻¹		
			Ignore SF except 1 SF Correct answer with no working scores (2)	
			Allow TE in M2 for use of $\Delta H + T$	
			Comment	
			Mark value first – if correct, with units and sign award 2 marks For units allow kJ K ⁻ mol ⁻ / J K ⁻ mol ⁻	

Question Number	Acceptable Answers		Additional Guidance	Mark
15(b)	An explanation that makes reference to:			3
	• ΔS_{system} must be positive	(1)	Allow 'ΔS _{system} is more positive'	
	• $\Delta S_{\text{system}} > 86.24 \text{ J mol}^{-1}$ / answer to (a)	(1)	Allow $T\Delta S_{system}$ is greater in magnitude / more negative than ΔH	
	• (as compound does dissolve) ΔS_{total} is > 0 / positive	(1)	ΔG is negative	
			lf answer to (a) is positive , then M1 and M2 will be	
			 ΔS_{system} could be positive or negative 	
			• ΔS_{system} smaller in magnitude than answer to (a) / $T\Delta S_{\text{system}}$ is greater than ΔH	

(Total for Question 15 = 5 marks)

Question Number		Acceptable Answers	Addit	tional Guidance	Mark
16(a)(i)	•	rate against concentration graph with axes labelled, inc. units (1	are th arour Allow dm ⁻³	ot award M1 if axes ne other way nd r [BrO ₃ -] / mol re `initial'	3
	•	suitable scale chosen including the origin (1	/	s cover at least half ible space in both cions	
	•	all points plotted correctly and straight line of best fit. (1) Allow	±½ a square	
		25×10 ⁷	exten Do no	if line does not d to the origin ot award M3 if is non-linear	
		20×46' . v 15×10 ⁷			
		9 10×10 ⁷ 93 32 5×10 ³			
		0 0.63 0.06 0.09 0.12 0.15			
		concentration of BrO3 ions/moldm ³			

Question Number	Acceptable Answers	Additional Guidance	Mark
16(a)(ii)	• justification of first order	(First order with respect to BrO_3^-) as straight line (through origin / 0,0)	1
		Allow line with constant gradient	
		Allow rate is (directly) proportional to concentration	
		Allow use of data from graph to justify order	
		Do not award 'constant half life'	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(b)(i)	 deduce order wrt Br⁻ ions 	(1)	1 st order	2
	• deduce order wrt H ⁺ ions	(1)	2 nd order	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(ii)	rate equation shown	rate = $k[BrO_3^-][Br^-][H^+]^2$	1
		Allow TE from (b)(i)	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(b)(iii)	 rearrangement of rate equation 	(1)	Example of calculation $k = rate/[BrO_3^-][Br^-][H^+]^2 / k = 1.52 \times 10^{-5} \div (0.062 \times 0.21 \times 0.4^2)$	3
	• evaluation of <i>k</i>	(1)	7.2965 x 10 ⁻³ ignore SF except 1SF M1 can be subsumed within award of M2	
	• units for <i>k</i>	(1)	dm ⁹ mol ⁻³ s ⁻¹ allow in any order Correct answer with no working scores (3)	
			TE on (b)(ii)	
			Allow use of data from Run 2 or Run 3	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(c)	An answer that makes reference to:		Allow bromate ((V)) ions for reactants	3
	• reactants a d sorb onto palladium/catalyst surface	(1)	Allow 'bond/bind onto catalyst surface' Do not award a b sorb	
	• this weakens bonds in reactants	(1)	Ignore comments related to orientation	
	• products then desorb (from catalyst surface)	(1)	Allow 'products de-adsorb' / products released (from catalyst surface)	
			If no other mark is awarded allow one for: reaction follows an alternative pathway / route / mechanism of	
			lower activation energy	

(Total for Question 16 = 13 marks)

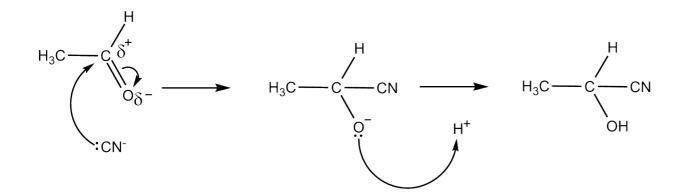
Question Number	Acceptable Answers		Additional Guidance				Mark
17(a)	• calculation of moles of C, H and O (1)			element	moles	ratio	2
				С	66.7÷12	5.56÷1.3875	
					=5.56	= 4	
				Н	11.1÷1	11.1÷1.3875	
					= 11.1	= 8	
				0	22.2÷16	1.3875÷1.3875	
					=1.3875	= 1	
	• calculation of ratio and identify that ratio matches molecular formula	(1)	Rati	o C₄H8O n	natches C_8	H ₁₆ O ₂	
	OR						
	• calculate molar mass of Y	(1)	Mol	ar mass =	144 (g mo	l ⁻¹)	
	calculate % of each element	(1)	C=9	6÷144x10	0 = 66.7%		
			H=1	6÷144x10	0 = 11.1%		
			O=3	2÷144x10	0 = 22.2%		

Question Number	Acceptable Answers	Additional Guidance	Mark
17(b)(i)	2,2-dimethylpropyl propanoate (2)	Any name with '-propyl propanoate' scores 1 propyl-2,2-dimethyl propanoate scores 1 2,2-dimethyl propanoate scores 1 2,2-dimethylpropyl ethanoate scores 1	2
Question Number	Acceptable Answers	Additional Guidance	Mark
17(b)(ii)	$H_{3}C \xrightarrow{H_{2}} OH \xrightarrow{H_{2}} OH \xrightarrow{H_{2}} CH_{3} \xrightarrow{CH_{3}} CH_{3}$ OR	Both structures required for mark Allow structures of propanoyl chloride / propanoic anhydride Allow any combination of correct	1
	HO OH	skeletal, structural or displayed formulae. Ignore names even if incorrect Do not award connectivity to hydroxyl group via H atom	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(c)(i)	$\begin{array}{c} B\\ H_{2}\\ H_{3}C\\ A\end{array} \\ C\\ C$	Labels B C and D can be used interchangeably as long as the three proton environments are identified correctly. Allow 3 methyl groups to be circled individually but with a single label / labels pointing to all 3	1

Question Number	Acceptable Answers		Additional Guidance		Mark
17(c)(ii)	Hydrogen environment	Splitting pattern of peak	Relative peak area	1 mark for each row. But lf two or more rows are incorrect then award	3
	(A)	(triplet)	(3)	whichever of these alternatives is higher	
	В	quartet	2	Allow 2 marks for 3 correct	
	С	singlet	2	splitting patterns. OR	
	D	singlet	9	Allow 1 mark for 3 correct	
	Note : allow 'quadru 'sing	iplet' as alternativ le' as alternative f	•	peak areas. OR Allow 1 mark for correct row	
	Do not award 'quad	rať		marked consequentially on the labelling in 17(c)(i)	

(Total for Question 17 = 9 marks



nis question assesses the studen nd logically structured answer wi asoning. arks are awarded for indicative of structured and shows lines of re ne following table shows how the dicative content. Number of indicative marking points seen in answer 6 5-4 3-2 1	ith linkages and fully sustained content and for how the answer easoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages).	6
ooints seen in answer 6 5-4 3-2	indicative marking points 4 3		
5-4 3-2	3		
3-2			
	2		
1			
	1		
0	0		
ne following table shows how the ructure and lines of reasoning Answer shows a coherent logical	Number of marks awarded for structure of answer and sustained lines of reasoning		
structure with linkages and fully sustained lines of reasoning demonstrated throughout			
Answer is partially structured with some linkages and lines of reasoning	1		
Answer has no linkages between points and is unstructured	n 0		
str sus der An wit rea	ucture with linkages and fully stained lines of reasoning monstrated throughout swer is partially structured h some linkages and lines of asoning swer has no linkages betweer ints and is unstructured	for structure of answer and sustained lines of reasoning wer shows a coherent logical ucture with linkages and fully stained lines of reasoning monstrated throughout swer is partially structured h some linkages and lines of asoning swer has no linkages between ints and is unstructured	for structure of answer and sustained lines of reasoningswer shows a coherent logical ucture with linkages and fully stained lines of reasoning monstrated throughout2swer is partially structured th some linkages and lines of asoning1swer has no linkages between0

IP1 Bonding in sodium chloride is (almost) 100% ionic bonds and as the theoretical and Born-Haber values are (very) similar	If neither IP1 or IP2 scored can get 1IP for Bonding in sodium chloride is (almost) 100% ionic bonds and bonding in magnesium iodide has some covalent character
 IP2 Bonding in magnesium iodide has some covalent character and as theoretical and Born-Haber values are (significantly) different 	
• IP3 Anion is (more) polarised in magnesium iodide (than sodium chloride)	
• IP4 Magnesium ion has a greater charge density (than sodium ion), so greater polarising power	ALLOW Magnesium ion has a greater charge/smaller than sodium ion, so greater polarising power
IP5 lodide ion is larger (than chloride ion), so is more easily polarised	polarisation must be mentioned at least once in IP3, IP4 and IP5 Penalise use of 'atoms' instead of ions once only in IP3 IP4 and IP5 Penalise lack of comparative language once only in
• IP6 Magnesium iodide has stronger bonding than sodium chloride because the charge on the magnesium ion is twice as large (as the charge on the sodium ion)	IP4, IP5 and IP6 Allow magnesium iodide has stronger bonding (than expected) due to polarisation / covalent character Allow both compounds have strong bonds as large amounts of energy needed to break up lattice / released when lattice forms / needed to break many strong bonds

(Total for Question 18 = 6 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
19(a)(i)	 arrow from lone pair on carbon of cyanide ion to carbon 	yl carbon (1)		4
	• dipoles on carbon and oxygen in carbonyl bond and arrow from			
	carbonyl bond to oxygen or just beyond	(1)		
	• structure of intermediate, including charge	(1)	Penalise absence of lone pair only once in M1, M3 and M4	
	 arrow from lone pair of oxygen in intermediate to hydrog in HCN 	gen ion / H (1)	If HCN used to protonate in step 2, dipole on HCN and curly arrow to break HCN bond are not required Ignore product	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(ii)	The prediction is incorrect because		3
	 ethanal is planar around the carbonyl carbon atom / planar around the CHO (1) 	Accept planar at the site of the nucleophilic attack / planar about C=O	
		Do not award planar molecule / cation / intermediate	
	• (so in Step 1) the (carbonyl) carbon can be attacked from above or below (1)	Allow attack from any direction / either side	
	 hence both stereoisomers (of intermediate / product) will form in equal amounts or 		
	so product mixture is racemic / rotates the plane of plane- polarised light equally in both directions (1)	Ignore 'has no effect on the plane of plane-polarised light'	
		Ignore comments related to SN1 or SN2	
		If no other mark scored allow 1 mark for idea that product will rotate plane of plane polarised light as it has a chiral centre / carbon	

Question Number	Accept	able Answers		Additional Guidance	Mark
19(a)(iii)	•	hydrolysis	(1)		4
	•	(dilute) hydrochloric acid / HCl((aq))	(1)	Allow any strong acid by name or formula Allow sodium hydroxide followed by any (strong) acid	
	•	heat (under reflux) / reflux ((1)	Ignore conc / concentrated Allow 'boil' for heat <mark>Ignore 'warm'</mark>	
	OR OR	CH ₃ CH(OH)CN + 2H ₂ O + H ⁺ → CH ₃ CH(OH)COOH + NH ₄ ⁺ CH ₃ CH(OH)CN + 2H ₂ O → CH ₃ CH(OH)COOH + NH ₃ CH ₃ CH(OH)CN + 2H ₂ O + HCl → CH ₃ CH(OH)COOH + NH ₄ C			
	and	CH ₃ CH(OH)CN + H ₂ O + OH [−] \rightarrow CH ₃ CH(OH)COO [−] + NH ₃ CH ₃ CH(OH)COO [−] + H ^{+ −} \rightarrow CH ₃ CH(OH)COOH		Allow NaOH for OH ⁻ Allow HCI for H ⁺ Ignore state symbols even if incorrect	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(b)	• CH ₃ CH(OH)COOH + NaHCO ₃ \rightarrow CH ₃ CH(OH)COO ⁻ Na ⁺ + H ₂ O + CO ₂ OR H ⁺ + HCO ₃ ⁻ \rightarrow H ₂ O + CO ₂	Allow CH ₃ CH(OH)COONa Allow H ₂ CO ₃ Ignore state symbols even if incorrect Do not award if covalent bond shown between O and Na	1

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(i)	• (large concentration of) HCO_3^- react with (extra) H^+ ions (1)	Allow ratio of [HCO ₃ -] to [H ₂ CO ₃] remains constant / ratio of [salt] to [acid] remains constant	3
	• equilibrium 1 moves to the RHS to keep concentration of H^+		
	ions constant / H_2CO_3 forms to keep concentration of H^+ ions	Allow H ₃ O ⁺ for H ⁺	
	constant (1)	Allow equilibrium 1 moves to the RHS to remove excess H ⁺ ions / H ₂ CO ₃ forms to remove excess H ⁺ ions	
	 equilibrium 2 moves to RHS to form CO₂ (which can be excreted from the body) / H₂CO₃ then forms CO₂ (and water) (1) 		
		If no reference to H^+ and CO_2 in M2 and M3 but direction of movement of equilibria are correct in both cases, allow 1 mark	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(ii)	• calculation of $[H^+] / [H_3O^+]$ (1)	$[H^+] = 10^{-7.41} / = 3.8905 \times 10^{-8}$	3
	• <i>K</i> _a expression (1)	$K_{a} = [HCO_{3}^{-}][H^{+}]$ $[H_{2}CO_{3}]$ Allow [H_{3}O^{+}] in K_{a}	
		Do not award [H ₂ O] in K_a expression	
	 rearrangement of K_a expression and calculation of [HCO₃⁻] : [H₂CO₃] (1) 	$[HCO_3^{-1}]$: $[H_2CO_3]$ = 4.5 x 10 ⁻⁷ ÷ 3.8905 x 10 ⁻⁸ = 11.567 : 1 = 11.6 (: 1) Ignore SF except 1 Allow correct rounding of $[H^+]$ to 3.9 x 10 ⁻⁸ Allow 1 : 0.086444 if it's clear that 1 relates to $[HCO_3^{-1}]$	
	OR • calculation of p <i>K</i> _a (1)	$pK_a = -\log 4.5 \times 10^{-7} = 6.3468$	
	• Henderson Hasselbach expression (1)	$pH = pK_a + \log([HCO_3^-] \div [H_2CO_3])$	
	 rearrangement of K_a expression and calculation of [HCO₃⁻] : [H₂CO₃] (1) 	7.41 - 6.3468 = log([HCO ₃ ⁻] \div [H ₂ CO ₃]) [HCO ₃ ⁻] : [H ₂ CO ₃] = 11.567 (: 1) Correct answer with no working scores (3) If final answer close, check for and allow correct rounding	

(Total for Question 19 = 18 marks) (Total for Section B = 51 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(i)	When the pressure is increasedequilibrium moves to RHS and yield (of chlorine) increases (1)	Marking points are independent Allow ' <mark>forward</mark> reaction favoured so yield (of chlorine) increases'	3
	• as fewer gas molecules on the RHS (5:4) (1)	If numbers are given they must be correct Allow use of 4/5 ratio to justify decrease in quotient / greater increase in denominator as total pressure increases, (so eqm moves (to RHS) to restore Kp)	
	• $K_{\rm p}$ remains constant (1)	Allow 'change in pressure has no effect on value for K_{p} '	

Question Number	Acceptable Answers	Additional Guidance Mark
20(a)(ii)	 When the temperature increases equilibrium moves to LHS as (forward) reaction is exothern (1) 	Marking points are independent2micAllow reaction moves in endothermic direction Allow increase in T reduces ΔS_{surr} and hence ΔS_{total} decreases
	• K_p decreases and so yield (of chlorine) decreases	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
20(a)(iii)	When a catalyst is usedrate of backward and forward reactions increases by same amount	(1)		2
	• so K_p and yield (of chlorine) is unchanged	(1)		

Question Number	Acceptable An	iswers			Additional Guidance	Mark
20(b)(i)						3
	Substance	Initial amount / mol	Equilibrium amount / mol	Mole fraction at equilibrium	For mole fractions allow	
	HCI	0.850	0.350	0.26415	e.g. 0.350 ÷ 1.325	
	O ₂	0.600	0.475	0.35849	allow correct rounding	
	H ₂ O	0	0.250	0.18868		
	Cl ₂	0	0.250	0.189		
	Total m	oles at equilibriu	m = 1.325			
				-		
	All values corre	ect scores (3)				
	M1 1 correct ec	quilibrium amou	nt	(1)	Ignore SF except 1 SF	
	M2 other 2 cor	rrect equilibrium	amounts	(1)		
	M3 Consequen	tial total moles a	nd mol fraction	(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(ii)	$K_{\rm p} = p({\rm H}_2{\rm O})^2 p({\rm Cl}_2)^2 \div p({\rm HCl})^4 p({\rm O}_2)$	Ignore parentheses	1
		Do not award square brackets	

Question Number	Acceptable Answers		Additional Gui	Additional Guidance		
20(b)(iii)			Example of calc			3
			allow TE from 20		1	
	mole fractions converted to partial pressure	(1)		рр		
			HCI	0.39623		
			O ₂	0.53774		
			H ₂ O	0.28302		
			Cl ₂	0.28302		
			Allow e.g. for p	p(HCl); 0.26415	x 1.5	
	• final value for K_p given to 2 or 3SF (1)		(0.28302) ² (0.283	302) ²		
			(0.39623) ⁴ (0.53	3770)		
			= 0.48 / 0.484	e = 0.48408 if no r incorrect expre		
			Check final answ rounding used i	ver if close, and a n working	allow if correct	
			atm ⁻¹			
	• correct units given (1)			from incorrect e	expression in (b)(ii)	

Question Number	Acceptable Answers		Additional Guidance	Mark
20(b)(iv)	• recall of expression for ΔS_{total}	(1)	$\Delta S_{\text{total}} = R \ln K$	2
	• calculation of ΔS_{total}	(1)	= 8.31×-0.726 = -6.033 (J K ⁻¹ mol ⁻¹) Allow TE / rounded value from (iii) No TE for M2 from incorrect expression Ignore SF except 1 SF Ignore units even if incorrect NOTE $\Delta S_{total} = -6.0289$ if no rounding from (b)(iii) $\Delta S_{total} = -6.0993$ if 0.48 used from b(iii)	

Question Number	Acceptable Answers	Additional guidance	Mark
20(c)	• general shape of increase from left to right ALLOW straight line (1)	Allow horizontal sections allowed between phase changes for M1	3
	• two vertical stages for melting and boiling (1)		
	 include the use of 273K for melting and 373K for boiling temperature either by labelling or position on x axis 	M3 is independent of M2, providing a line is drawn	
		Example of graph	

(Total for Question 20 = 19 marks) (Total for Section C = 19 marks) Total for Paper = 90 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom