

CHEMISTRY

9701/43 October/November 2019

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **14** printed pages.

[Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

9701/43

Question	Answer	Marks
1(a)	Platinum / Pt Aluminium / Al BOTH	1
1(b)(i)	M1: use of or quoting a valid Nernst equation $E = E^{\circ} + 0.0590 / z \log [ox] / [red]$ OR $E = 0.15 + (0.0590 / 2) \log 2$	2
	M2: <i>E</i> = (+) 0.16 (0.159) V minimum 2 sig. fig.	
	correct answer scores 2 marks	
1(b)(ii)	$E_{cell} = 0.16 - (-1.66) = +1.82 V$ minimum 3 sig. fig.	1
1(b)(iii)	$2Al + 3Sn^{4+} \rightarrow 2Al^{3+} + 3Sn^{2+}$	2
	M1: species	
	M2: balancing	
1(c)	M1: number of C (= $300\ 000 \times 60 \times 60 \times 24$) = 2.59×10^{10} (C)	4
	M2: number of $F(= 2.592 \times 10^{10} / 9.65 \times 10^4) = 2.69 \times 10^5$ (moles of electrons)	
	M3: moles of $Al (= 2.69 \times 10^5 / 3) = 8.95 \times 10^4$	
	M4: mass of Al (= $8.95 \times 10^4 \times 27$) = 2420 kg	
	correct answer scores 4 marks	
1(d)	M1: $(Cr^{2+} + 2e^{-} \rightleftharpoons Cr) E^{e} = -0.91$ and $(2H^{+} + 2e^{-} \rightleftharpoons H_{2}) E^{e} = 0.00$ seen	2
	M2: hydrogen formed instead / hydrogen (ions) easier to reduce / hydrogen has more positive E^{e}	

Question	Answer	Marks
2(a)	M1: eight electrons around N atom [N=O, N-O, N-C <i>l</i> with N-O as dative]	2
	M2: all other electrons correct	
2(b)(i)	(rate =) k[C <i>l</i> NO ₂][NO]	1
2(b)(ii)	mol ⁻¹ dm ³ s ⁻¹	1
2(b)(iii)	Yes AND number of moles of reactants in overall equation is the same as order in rate equation	1
2(c)(i)	 straight line with a negative gradient starting at 2.0 × 10⁻⁴ reaches at 1.8 × 10⁻⁴ at 0.2 seconds Award 1 mark for two points, award 2 marks for all three points 	2
2(c)(ii)	2×10^{-5} (mol dm ⁻³)	1
2(c)(iii)	The reaction has reached equilibrium	1

Question	Answer	Marks
3(a)	a measure / degree of disorder / randomness of a system	1
3(b)	M1: negative – molecules have less energy in the system	3
	M2: positive – solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
3(c)(i)	(standard) Gibbs free energy <u>change</u>	1
3(c)(ii)	M1: $(\Delta)G = \Delta H - T\Delta S$	2
	M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = $\Delta H / \Delta S$ [1]	

Question			Answer
4(a)	M1: CH₃COC <i>l</i> or	ethanoyl chloride	
	M2: AIC l ₃ catalys	st	
4(b)	reagent	organic product	name of mechanism
	Cl	COCH ₂ CI chlorine atom(s) in side chain only	free radical substitution
	nitric / sulfuric	O_2N one only $-NO_2$ group added at 3 position	electrophilic substitution
	Br	no reaction with Br ₂	
	Award 1 mark for	r each correct entry to the table	e [5]
4(c)(i)	nucleophilic addit	tion	

Question	Answer	Marks
4(c)(ii)	 Get CH3 Get CH3 Get CN⁻ CH3 Get CN⁻ CH3 Get CN Get CN CN	4
4(d)(i)	CH ₃ CH ₃ H	1
4(d)(ii)	LiA <i>l</i> H ₄ or NaBH ₄	1
4(d)(iii)	conc H ₂ SO ₄ / conc H ₃ PO ₄ / Al ₂ O ₃	1
4(d)(iv)	6	1

Question	Answer	Marks
4(d)(v)	 25-50 110-160 190-220 	2
	Award 1 mark for two points, award 2 marks for three points	

Question	Answer	Marks
5(a)(i)	$K_{\rm sp} = [Ag^+]^2[S^{2-}]$	1
5(a)(ii)	• $[S^{2-}] = 1.16 \times 10^{-17}$ • $[Ag^{+}] = 2.32 \times 10^{-17}$ • $K_{sp} = 6.2(4) \times 10^{-51}$ minimum 2 sig. fig. correct answer scores 2 marks	2
	Award 1 mark for two points, award 2 marks for three points	
5(a)(iii)	M1 : moles Ag ₂ S = 1 / 247.9 = 0.00403 moles [1] 2sf min	2
	M2 : $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2sf min ecf on M1	
	correct answer scores 2 marks	
5(b)(i)	M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$	2
	M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	
	correct answer scores 2 marks	

Question	Answer	Marks
5(b)(ii)	M1: Both equilibria correctly stated moles KOH = $0.005 \times 0.2 = 1 \times 10^{-3}$ moles HOBr(initial) = $0.020 \times 0.2 = 4 \times 10^{-3}$ moles HOBr(eqm) = $4 \times 10^{-3} - 1 \times 10^{-3} = 3 \times 10^{-3}$ moles BrO ⁻ (eqm) = 1×10^{-3} M2: ratio [OBr ⁻]/[HOBr] = $1/3$ [H ⁺] = $3 \times 2.0 \times 10^{-9} = 6 \times 10^{-9}$ pH = $8.2(2)$ correct answer scores 2 marks	2

Question	Answer	Marks
6(a)(i)	$Mg(g) \rightarrow Mg^+(g) + e^-$	1
6(a)(ii)	$Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq) + H_2(g)$	1
6(a)(iii)	more reactive and easier to ionise down the group OR more reactive and ionisation energies decrease down the group	1
6(b)(i)	brown gas and white solid	1
6(b)(ii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	1
6(b)(iii)	M1: more stable (down the group)	3
	M2: cationic radius increases / charge density of M ²⁺ decreases (down the group)	
	M3: NO ₃ [−] anion is less polarised / distorted	

Question	Answer	Marks
6(c)	M1: less soluble / decreases (down the group)	4
	M2: ΔH_{hatt} and ΔH_{hyd} both decrease / less exothermic down the group	
	M3: ΔH_{hyd} decreases by more (than ΔH_{latt})	
	M4: ΔH_{sol} becomes more endothermic / less exothermic	

Question	Answer	Marks
7(a)	forms one or more stable ions with incomplete / partially filled d-orbitals / d-subshell	1
7(b)(i)	purple to pale pink / colourless AND orange to green	1
7(b)(ii)	$3Sn^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$	1
7(c)(i)	 six coordinate bonds / dative bonds / lone pairs donated to the (central) metal ion award 1 mark for all three points 	1
7(c)(ii)	[Ru(NH ₃) ₄ C <i>l</i> (SO ₂)] ⁺	1
7(c)(iii)	$H_{3}N_{H_{1}}, \bigvee_{NH_{3}}^{NH_{3}}, \bigcup_{Q_{2}}^{CI} \bigcup_{NH_{3}}^{NH_{3}} \bigcup_{Q_{2}}^{NH_{3}} \bigcup_{NH_{3}}^{NH_{3}} \bigcup_{Q_{2}}^{NH_{3}} \bigcup_{NH_{3}}^{NH_{3}}$ $M1: \text{ six correct ligands around Ru, bonds are shown from S of SO_{2}}$ $M2: 3-D \text{ bonds used correctly for octahedral}$ $M3: \text{ cis and trans isomers shown}$	3

Question	Answer	Marks
7(c)(iv)	cis-trans or geometric(al) [1]	1
7(c)(v)	 M1: complexes have two sets of d orbital(s) of different energy OR d-orbitals splits into two sets (of orbitals) 	3
	M2: visible light absorbed (and complementary colour observed)	
	M3: electron(s) promoted / excited OR electron(s) moves to higher (d–) orbital	

Question	Answer	Marks
8(a)(i)	 any one from: OH⁻ / NaOH; aqueous / dilute; heat under reflux H⁺ / HC1 / H₂SO₄, aqueous / dilute; heat under reflux protease or named protease; water; T = 30° – 40°C all three points in each bullet [1] 	1
8(a)(ii)	HO HO HO HO HO HO HO HO HO HO HO HO HO H	2

Question	Answer	Marks
8(b)	 permanent dipole-dipole one group that will have a δ⁺ and another with δ⁻ e.g. CO, NH, COOH, OH BOTH [1] hydrogen bonds one group that will have a H^{δ+}, e.g. NH, OH and another with lone pair, e.g. NH, COOH, OH, CONH₂ BOTH [1] ionic bonding NH₃* and COO⁻ BOTH [1] ALLOW London forces C₄H₉ groups or parts of these alkyl groups 	3
8(c)(i)	any structure containing one COOH / COC l and NH ₂ groups in the same molecule [1]	1
8(c)(ii)	HOCH2CH2OH [1] ethan(e)-1,2-diol [1] ecf for diols HO2CCO2H or ClOCCOCl [1] ethan(e)dioic acid or ethan(e)dioyl chloride [1] ecf for diacids / diacyl chlorides	4

[Question	Answer	Marks
	9(a)(i)	$RNH_2 + H^+ \rightarrow RNH_3^+ $ OR $RNH_2 + HCl \rightarrow RNH_3Cl$ [1]	1
Ī	9(a)(ii)	weaker AND lone pair of N delocalised into benzene ring [1]	1

October/November 2019

Question	Answer	Marks
9(b)	$ \begin{array}{c} \underset{H_{2}N}{}{\underset{H_{2}N}} \underset{H_{2}N}{\underset{H_{2}N}} \underset{H_{2}N}} \underset{H_{2}N}{\underset{H_{2}N}} \underset{H_{2}N}{\underset{H_{2}N}} \underset{H_{2}N}{\underset{H_{2}N}} \underset{H_{2}N}} \underset{H_{2}N} \underset{H_{2}N}} \underset{H_{2}N}{\underset{H_{2}N}} \underset{H_{2}N}} \underset{H_{2}N} \underset{H_{2}N} } \underset{H_{2}N} \underset{H_{2}N} \underset{H_{2}N} \underset{H_{2}N} \underset{H_{2}N} \underset{H_{2}N} } \underset{H_{2}N} \underset{H_{2}N} \underset{H_{2}N} } \underset{H_{2}N} \underset{H_{2}N}$	3
9(c)(i)	2 [1]	1
9(c)(ii)	CH_2 next to ester and terminal CH_3 are circled [1]	1
9(c)(iii)	 one less peak the lost peak is NH₂ / aryl amine protons exchange with D OR protons are labile OR valid equation √√ for two marks [2] 	2
9(d)	$C_6H_4NH_2^+$ and $CH_3CH_2CH_2CH_2^+$ [1]	1