

CHEMISTRY

9701/42 October/November 2017

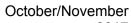
Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

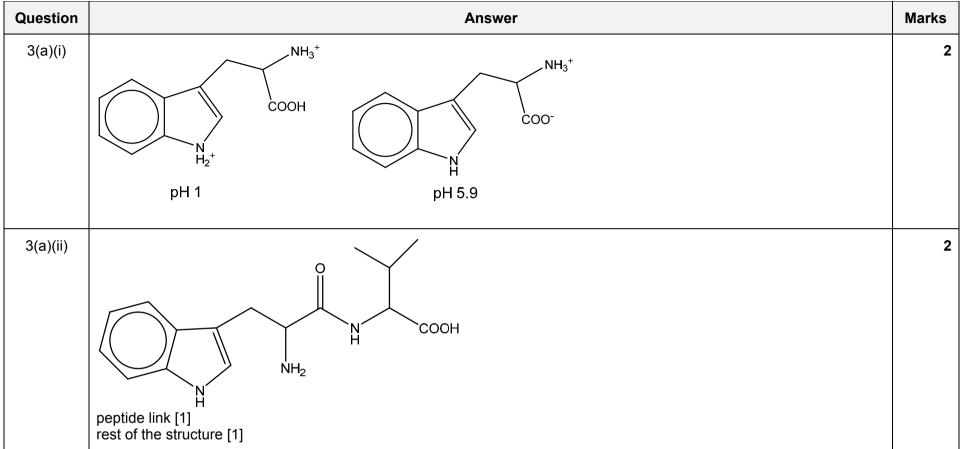
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.


Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.


Question	Answer	Marks
1(a)	Cl+3 to +4 (and oxidised)	1
	Cl 0 to -1 (and reduced)	1
1(b)	19 electrons total [1] correct diagram [1]	2
1(c)(i)	the exponent / power to which a concentration is raised in the rate equation	1
1(c)(ii)	$(0.0022 = k (0.01) \times (0.06))$ k = 3.7 (3.67)	1
	$mol^{-1} dm^3 s^{-1}$	1
1(c)(iii)	initial rate = 5.50×10^{-3}	1
	$[ClO_2] = 0.048$	1
1(d)(i)	slowest step (in a multi-step reaction)	1
1(d)(ii)	1 mole of F_2 and 1 mole ClO_2 reacting in the rate-determining step	1
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
1(e)	k increases (as rate increases)	1

Question	Answer	Marks
2(a)(i)	$Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$	1
2(a)(ii)	moles of $Mg_3N_2 = 2.52 / 100.9 = 0.025 (0.0249)$	1
	(moles of Mg(OH) ₂ = 0.075 (0.0749)) mass of Mg(OH) ₂ = $(0.075 \times 58.3) = 4.37$ g or 4.4 g	1
2(b)	solubility increases (down the group)	1
	ΔH_{latt} and ΔH_{hyd} both decrease / less exothermic / more endothermic	1
	but ΔH_{latt} decreases more (than ΔH_{hyd} decreases)	1
	ΔH_{sol} becomes more negative / more exothermic / less endothermic	1
2(c)(i)	$K_{\rm sp} = [Mg^{2+}] [OH^{-}]^2$	1
2(c)(ii)	$K_{\rm sp} = (1.7 \text{ x } 10^{-4}) \times (2 \times 1.7 \times 10^{-4})^2 = 2.0 \times 10^{-11} (1.97 \times 10^{-11})$	1
	mol ³ dm ⁻⁹	1
2(d)	cations become bigger / ionic radius increases	1
	polarisation/distortion of anion / hydroxide ion decreases	1

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

2017

PUBLISHED						
Question	n Answer					
3(b)	reagent	structure of product	type of organic reaction		8	
	Na	Na ⁺ O ⁻ NH ₂ NH ₂ [1]	redox or reduction			
	excess Br ₂ (aq)	HO Br HO HI HO HO HO HO HO HO HO HO HO HO HO HO HO	(electrophilic) substitution			
	excess CH ₃ COC <i>l</i>	Acylated OH [1] acylated NH(2) [1]	condensation (or addition + elimination)			
	excess H ₂ /Pt catalyst	HO HO HO H H H [1]	reduction or hydrogenation or addition			

Question	Answer	Marks
3(c)(i)	(spectrum of M) contains a broad peak (for O–H) at 2500–3000 cm ⁻¹ <i>or</i> (spectrum of M) contains peak (for C=O) at 1640–1750 cm ⁻¹ <i>or</i> (spectrum of M) lacks (NH ₂ peak) at 3300–3500 cm ⁻¹	1
3(c)(ii)	5 or 6 peaks	1
	OH/NH protons exchange with deuterium or –OH / –NH + D ₂ O \rightarrow –OD / –ND + DHO	1
3(d)	ester and hydrolysed	1

Question	Answer	Marks
4(a)(i)	<i>E</i> ^e _{cell} = 1.00 – (–0.26) = (+)1.26 V	1
4(a)(ii)	$VO_2^+ + V^{2+} + 2H^+ \rightarrow VO^{2+} + V^{3+} + H_2O$	1
4(a)(iii)	solutions labelled correctly in one half-cell [1] solutions labelled correctly in both half-cells [1] two graphite or platinum electrodes [1] salt bridge and voltmeter [1]	4

Question	Answer	Marks
4(b)	• $V^{2^+}(aq)$ and $Sn^{4^+}(aq)$: yes and $E^{9}_{cell} = +0.15 - (-0.26) = +0.41 V [1]$ $2V^{2^+} + Sn^{4^+} \rightarrow 2V^{3^+} + Sn^{2^+} [1]$	3
	 VO²⁺(aq) and Fe³⁺(aq) no reaction [1] 	

Question	Answer	Marks
5(a)	(Na ⁺) 0.095 / 0.181 = 0.525 and octahedral and co-ordination no. = 6	1
	(Mg ²⁺) 0.065 / 0.181 = 0.359 and tetrahedral and co-ordination no. = 4	1
5(b)	enthalpy change = (-642) - (2 × -106) = - 430	1
5(c)(i)	-106 = 147 + 121 + 736 + (-349) + lattice energy lattice energy = -761	3
5(c)(ii)	MgCl ₂ more exothermic / negative / bigger than MgCl and NaCl more exothermic / negative / bigger than MgCl	1
	(reason for MgC l_2) higher charge / lower radius of Mg ²⁺ cation	1
	(reason for NaC <i>l</i>) smaller radius of Na ⁺ cation	1
5(d)	energy change when 1 mole of atoms / ions each gain an electron or energy change when 1 mole of atoms / ions gain 1 mole of electrons	1
	gaseous	1

Question			Ar	swer	Marks
6(a)	central metal atom/ion surrounded by (one or more) ligands				1
6(b)		co-ordination number	oxidation number		2
	$[Pt(NH_3)_4Cl_2]^{2+}$	6	+4		
	[PtCl ₄] ²⁻	4	+2		
		Pt	t H ₃		
6(d)	(HNO ₃ +) AgNO ₃ reagent			1	
	[Pt(NH ₃) ₄ Cl ₂]Br ₂	with cream ppt. (of	AgBr) and [Pt(NH ₃) ₄ Br ₂	Cl ₂ , with white ppt. (of AgCl) observation with both	1
6(e)	octahedral: both				1
	square planar: geometric			1	
	tetrahedral: neith	er			1

Question	Answer	Marks
6(f)	diagrams	3
	 products are released lower <i>E</i>_A/ bonds weakened in substrate 	

Question	Answer	Marks
7(a)(i)	$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$	1
7(a)(ii)		1
7(b)	C_nH_{2n-2}	1
7(c)(i)	delocalised electrons	1
7(c)(ii)	СН	1
7(c)(iii)	less dense	1

			FOL	BLISHED			2017
Question				Answer			Marks
7(d)(i)	$R \rightarrow C = C + R''$						3
7(d)(ii)	nucleophilic additio	n					1
7(d)(iii)	C₂H₅—C≡=C-	—н 🦯 [1]	[1]				2
	Q		R				
7(e)		CH₃CHO	HCO ₂ H	CH ₃ COCH ₃	HO ₂ CCO ₂ H]	4
	hot acidified MnO₄ [−] (aq)	\checkmark	✓	×	~		
	alkaline $I_2(aq)$	\checkmark	×	✓	×]	
	Tollens' reagent	\checkmark	\checkmark	*	×		

	PUBLISHED	2017
Question	Answer	Marks
8(a)(i)	ircle or asterisk on correct C atom only [1]lines through the two correct bonds only [1]	2
8(a)(ii)	ketone, (tertiary) alcohol, alkene, carboxylic acid two for each mark	2
8(a)(iii)	sp carbons = 0 sp^2 carbons = 8 sp^3 carbons = 9	1
8(a)(iv)		2
8(b)(i)	compoundspotJ2K3	1
	L 1	

Question	Answer	Marks
8(b)(ii)	The more polar the compound and stronger attractive forces to the (polar) stationary phase ora: less polar compound and weaker attractive forces to the (polar) stationary phase	1
8(b)(iii)	$R_{\rm f}$ = retardation factor or retention factor or $R_{\rm f}$ =distance moved by compound from baseline over distance travelled by solvent front	1

