MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme	Syllabus	Paper				
			GCE	E AS/A LEVEL -	9701	23				
1	(a)	same proton number/atomic number different mass number/nucleon number						(1) (1)	[2]	
	(b)	A _r =	= <u>(32</u>	× 95.00	0 <u>) + (33 × 0.77) +</u> 100		(1)			
		=	= <u>304(</u>		<u>41 + 143.82</u> = <u>32</u> 00					
		whi	ch giv	ves A _r =		(1)	[2]			
	(c)					number of				
			isoto	oes	protons	neutrons	electrons			
			²¹³ F	0	84	129	84			
			²³² T	ĥ	90	142	90			
		if th	ere a w ma	re no 'c ximum	for each correct olumn' marks, o ne mark for a				(3 × 1)	[3]
	(d)	(i)		eon no. on no. is					(1) (1)	
		(ii)	Ra n	o t radi	um					[3]
									[Total	: 10]
2	(a)	(i)	mas	s of C =	= <u>12 × 1.32</u> = 0.3 44	6g			(1)	
			n(C)	= <u>0.36</u> 12	= 0.03				(1)	
		(ii)	mas	s of H =	= <u>2 × 0.54</u> = 0.06 18	9 g			(1)	
			n(H)	= <u>0.06</u> 1	= 0.06				(1)	
		(iii) yes because 0.03 mol of C are combined with 0.06 mol of H or C : H ratio is 1 : 2 or empirical formula is CH ₂							(1)	[5]

Pa	age 3	Mark Schem	Syllabus	Paper					
		GCE AS/A LEVEL	9701	23					
(b)) (i)	C : H : O = <u>64.86</u> : <u>13.50</u> : <u>2</u> 12 1		(1)					
		= 5.41: 13.50 : 1.3							
		= 4 : 10 : 1							
		gives C ₄ H ₁₀ O			(1)				
	(ii) H H H C H H *C - C - C - H								
		correct compound and corr			(1)				
		correct mirror object/ mirror image relationship in 3D			(1)				
	(iii)								
			H I	OH I					
		CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CCH ₂ OH	CH ₃ CCH ₃					
			ĊH ₃	ĊH ₃					
		(1)	(1)	(1)		[7]			
					[Total	: 12]			
3 (a)	corr	$) \rightarrow C^{+}(g) + e^{-}$ ect equation ect state symbols			(1) (1)	[2]			
(b)) (i)	Na and Mg Mg has greater nuclear cha	rge/more protons than Na		(1)				
		in both atoms, the 3s electrisame energy level/same sh		(1)					
	(ii)	Mg and A <i>l</i> in A <i>l</i> outermost electron is i		(1)					
		3p electron is at higher ene is further away/is more shie		(1)					

Page 4	l.	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS/A LEVEL – October/November 2011 9701		23	
(iii)		n d Ne He and Ne have the highest nuclear charges in their l	Period	(1)	
(iv)		Ne, and Ar g down the group,			
	vale	nce/outer shell electrons are farther from the nucleus		(1)	
	there	e is greater shielding		(1)	
		ction between valence electrons and nucleus is less o tive nuclear charge is less	r	(1)	
(c) (i)	-	Na to C/ eased nuclear charge/nuclear attraction		(1)	
(ii)	catio	on has fewer electrons than atom or on has lost outer electrons or on has fewer shells		(1)	
		cation has same nuclear charge as atom or on number is the same		(1)	

3 (d) ignore any state symbols

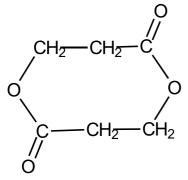
MgO(s)	+	NaOH(aq)			\rightarrow	NO REACTION	(1)	
MgO(s)	+	2 HC <i>l</i> (aq)			\rightarrow	MgCl ₂ + H ₂ O	(1)	
$Al_2O_3(s)$	+	2 NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 NaA <i>l</i> (OH) ₄ or		
$Al_2O_3(s)$	+	2 NaOH(aq)	+	$H_2O(I)$	\rightarrow	2 NaA <i>l</i> O ₂ + 2H ₂ O or	(1)	
$Al_2O_3(s)$	+	6 NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 Na ₃ A <i>l</i> (OH) ₆		
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	2 A <i>l</i> C <i>l</i> ₃ + 3 H ₂ O or	(1)	
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	Al_2Cl_6 + $3H_2O$	(1)	
SO ₂ (g)	+	NaOH(aq)			\rightarrow	NaHSO ₃ or	(1)	
SO ₂ (g)	+	2 NaOH(aq)			\rightarrow	$Na_2SO_3 + H_2O$	(1)	
SO ₂ (g)	+	HC <i>l</i> (aq)			\rightarrow	NO REACTION	(1)	

[Total: 19]

(1) [2]

(1)

4 (a) (i) C₂H₅O


(ii)

∕____OH

	Page 5	j	Syllabus	Paper				
		GCE A	S/A LEVEL – October/Nove	9701	23			
	(b) (i)	or structural is	functional group isomerism or structural isomerism do not allow 'functional isomerism' or positional isomerism					
	(::)							
	(ii)	compound	type of isomerism					
		Р	cis-trans or geometrical					
		т	optical					
						(1 + 1)	[3]	
	(c) (i)	dehydration/el	imination			(1)		
	(ii)	conc. H_2SO_4 /	P ₄ O ₁₀ / A <i>l</i> ₂ O ₃ / H ₃ PO ₄ / pumic	e		(1)		
	(iii)	CH ₂ =CHCH=C	CH ₂					
		allow CH ₂ =C=	CHCH₃			(1)	[3]	
	(d) (i)	CH ₃ CH ₂ CH(O	H)CH ₂ CH ₃			(1)		
	(ii)	steam conc. H ₂ SO ₄	with H₃PO₄ catalyst or then water			(1 + 1)		
		only allow con	dition mark if reagent mark ha	is been given				
	(iii)	$Cr_2O_7^{2-}/H^+$ or MnO_4^-/H^+				(1)	[4]	
						[Total:	: 12]	
						-	-	
5	(a) V is	HCHO				(1)	[1]	
	(b) (i)	ester				(1)		
	(ii)	W is HCO ₂ CH	3			(1)	[2]	
	(c) (i)	X is HOCH ₂ CH	H ₂ CO ₂ H			(1)		
	(ii)	Y is HO ₂ CCH ₂	CO ₂ H			(1)	[2]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(d) (i) Z is

(ii) esterification or dehydration or elimination or condensation (1)

(1) [2]

[Total: 7]