MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2010	Syllabus	Paper
1			$P_5 + 3H_2O \rightarrow 2H_3PO_4$ (or similar) or $P_4O_{10} + 6H_2O \rightarrow 4H_2 + H_2O \rightarrow H_2SO_3$ (1)	9701 H ₃ PO ₄ (1)	43
	(ii)	2NC	$D_2 + H_2O \rightarrow HNO_2 + HNO_3(1)$		
	(iii)	2C <i>1</i> ($O_2 + 2NaOH \rightarrow NaClO_2 + NaClO_3 + H_2O$ or ionic eqn ((1)	[4]
	(b) (i)		$H_4 + C_2H_6 + H_2S + 9O_2 \rightarrow 4CO_2 + SO_2 + 8H_2O$ mulae (1), balanced (1)		
	(ii)	•	e SO₂ produced) causes acid rain (1) onsequence of acid rain – defoliation etc. – or respirato	ry problem	
	(iii)	this M _r (e	0 dm ³ contains 50 dm ³ of H ₂ S is 50/24 (= 2.083 moles) (1) ethanolamine) = 24 + 7 + 14 + 16 = 61 efore mass = 2.083 × 61 = 127(.1) g (1) (or ecf)		
	(iv)	acid	l-base (1)		
	(v)	= {(=	= ΔH _f (rhs) – ΔH _f (lhs) (3 × 11 – 2 × 242)}{–}{(2 × –21 – 297)} –1 for each { } ir 451 + 339	n which there is a	
		=	112 (kJ mol ^{−1}) (2)		[8]
					[Total: 12]
2	<u>d</u> -o <u>co</u> wh	orbital: <u>lour</u> du ien e p	ee from: s / sub-shells / energy levels are <u>split</u> or equivalent * (1) ue to <u>absorption of light</u> (1) promoted to higher orbital * (1) or hυ or h /λ (marks * could be in labelled diagram) (1))	[3]
	liga ((N	and e> IH ₄) ₂ C	$\frac{Cu(H_2O)_6]^{2+}}{Cu(H_2O)_6]^{2+}}$ (or full correct name of ion) (1) xchange/displacement/replacement (1) CuC4 contains) [CuC4]^2- (1) s white as it has no ligands (1)		[max 3]
	(c) n(t	hio) =	= $0.02 \times 19.5/1000 = 3.9 \times 10^{-4} \text{ mol}(1)$		
	SO	[Cu ²⁺]	= $n(Cu^{2^+})$, so $n(Cu^{2^+})$ in 50 cm ³ = 3.9×10^{-4} mol] = $3.9 \times 10^{-4} \times 1000/50$ = (7.8 × 10 ⁻³ (mol dm ⁻³)) (1) -one-line: $n(thio) = n(Cu^{2^+})$, so $[Cu^{2^+}] = 0.02 \times 19.5/50$		l dm ⁻³)} (2)
			m ³ , there will be 7.8 × 10^{-4} mol, which is 63.5 × 7.8 × 10 f on 2nd and 3rd marks 0.5 gets 2 marks only) ⁻⁴ = 0.049 - 0.0	50 % (1) [3]
					[Total: 9]

	Page 3	Mark Scheme: Teachers' version Syllabus			Paper
		GCE A/AS LEVEL – October/	November 2010	9701	43
3	· · ·	: reduction or hydrogenation (1) I: oxidation or redox (1)			[2]
	(b) thymol: or or menthol: or menthone	Br ₂ (aq) (1) NaOH(aq) (1) FeC l_3 (aq) (1) Cr ₂ O ₇ ²⁻ /H ⁺ (1) Lucas test or ZnC l_2 /HC l (1) e: 2,4-DNPH/Brady's reagent (1)	decolourises or wh dissolves (1) violet/purple (colou orange \rightarrow green (1 cloudy or white ppt orange ppt (1)	r) (1))	[6] [Total: 8]
4	reaction I: reaction II: reaction IV: reaction V: reaction VI: reaction VII:	$\frac{Cl_2}{P} + \text{light (1) (not aq)}$ Br ₂ + A <i>l</i> Br ₃ or Fe or FeBr ₃ (1) (NaOH, heat in ethanol (1) (allow HNO ₃ + H ₂ SO ₄ (1) conc and < 6 KMnO ₄ + H ⁺ /OH ⁻ + heat (1) Sn + HC <i>l</i> (1) HNO ₂ + HC <i>l</i> , < 10°C (1)	w aqueous EtOH)		
	X is		H (1) allow –N ₂ — an	d –ONa	[max 8]

[Total: 8]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

- 5 (a) (i) $2H_2O 4e \rightarrow 4H^+ + O_2(1)$
 - (ii) $2Cl^{-}-2e \rightarrow Cl_{2}(1)$
 - **(b)** (i) $E^{\circ} = (1.23 (-0.83)) = 2.06V$ (1)
 - (ii) $E^{\circ} = (1.36 (-0.83)) = 2.19V (1)$ (in (i) if (a)(i) as $4(OH^{-}) - 4e \rightarrow 2H_2O + O_2$ ecf is 0.4 - (-0.83) = 1.23 (1) - needs working shown) [2]
 - (c) (i) <u>no change</u> (because [H₂O] does not change) (1) smaller/less positive (1)
 - (ii) The (overall) $\underline{E^{\circ}}$ for CL production will decrease, (whereas that) for $\underline{O_2}$ production will stay the same. (answer could be in terms of 1st E° decreasing and becoming lower than 2nd)(or E° for CL becomes less than for O_2) (1) [3]
 - (d) (i) $Cl^{-} + 3H_2O \rightarrow ClO_3^{-} + 3H_2(1)$
 - (ii) $n(C) = 250 \times 60 \times 60 = (9 \times 10^5 C) (1)$ $n(e^-) = 9 \times 10^5/96500 = 9.33 mol$ $n(NaClO_3) = 9.33/6 = (1.55 mol) - allow ecf (1)$ $Mr(NaClO_3) = 106.5$ mass $(NaClO_3) = 1.55 \times 106.5 = 165.5 g (1) (165 - 166 gets 3 marks, 993 gets 2 marks$ as ecf) [4]

[Total: 11]

[2]

Page	e 5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A/AS LEVEL – October/November 2010	9701	43
6 (a) ((i) Br ₂ ((ignore solvent, but do not credit A lCl_3 or HC l or light) ([1]	
(anol	y arrow from C=C to Br (1) ther one breaking Br-Br bond. (1) ect intermediate cation and Br ⁻ produced (not $Br^{\delta-}$) (1)		[max 3]
C E (C is NC E is C <i>l</i> C	$CH_2CH_2NH_2$ (1) CH_2CH_2CN (1) OCH_2CH_2COCl (1) $CH_2)_2$ or C_2H_4 . Allow correct atoms in any order on LHS	S but order mus	[3] t be correct on
• • •		II : heat, dilute $H^+(aq)$ or $HCl(aq)$ or $HCl(conc)$ or H_2S III : H_2 + Ni (or other named catalyst) or LiAl H_4 or Na i		[2]
(d) N	NH4 ⁺ (1)			[1]
(e) ((allo	ICH ₂ CH ₂ CH ₂ CH ₂ NH-COCH ₂ CH ₂ CO-] (1) w (CH ₂) ₄ and (CH ₂) ₂) dimer, needs bonds both ends)		
(i	ii) HC1	(1)		[2]
(f) ((i) [H⁺]	$= 10^{-pH} = 10^{-2.6} = 2.51 \times 10^{-3} \text{ (mol dm}^{-3}\text{) (1)}$		
(i	ii) Ka	= $[H^+]^2/c$ = 6.31 × 10 ⁻⁵ (mol dm ⁻³) (allow ecf from (i))	(1)	[2]
				[Total: 13]
1		$CH_{2}CH_{2}NH_{2} + HCl \rightarrow NH_{2}CH_{2}CH_{2}CH_{2}NH_{3}^{+} Cl^{-}(1)$ $CH_{2}CH_{2}NH_{3}^{+} Cl^{-} + HCl \rightarrow Cl^{-} NH_{3} + CH_{2}CH_{2}CH_{2}NH_{3}^{+}$ 1 only, if Cl^{-} omitted twice but allow with H^{+})	⁺ C <i>l</i> [−] (1)	[2]
(b) ຮ ຮ	starts at steep po	11.3 and finished as 1.6 (1) rtions at 10 cm ³ and 20 cm ³ volume added (1)		[2]
				[Total: 4]

	Page 6		5	Mark Scl	heme: Teachers' version	Syllabus	Paper
				GCE A/AS LE	/EL – October/November 2010	9701	43
8	8 (a) (i) diag		diag	ram to show tetrah	edral arrangement (3D or bond ang	gle marked) (1)	
		(ii)	4 co	valent bonds/bond	pair <u>s</u> (with C <i>l</i>) only or no lone pai	rs . (1)	[2]
	(b)	(i)	(fum	les are) HC <i>l</i> (from h	ns <i>or</i> heat evolved (1) hydrolysis of Sn-C <i>l</i> bonds) <i>or</i> exothern rk for HC <i>l</i> <u>(g)</u> in eqn.)	mic reaction/bond	breaking (1)
		(ii)	SnC	$l_4 + 2H_2O \rightarrow SnC$	D_2 + 4HC <i>l</i> etc. (allow partial hydrolys	sis and with OHs) (1) [3]
							[Total: 5]
9	(a)	Su	gar/de	eoxyribose, phosph	nate, base (or better)(<u>not</u> ribose) (1)		[1]
	(b)	Dia	igram	showing sugar-ph	osphate backbone (chain) (1)		
				n side-chain (1) ired – A-T or G-C (1)		
		H-b	onds	shown and labelle	d (1)		[4]
	(c)	mR	NA, r	ibosome, tRNA	all three correct (2) (mRNA first allow 1 mark)		[2]
	(d)	(i)	(4 ×	4 × 4) = 64 (1)			
		(ii)		.RT (or Met) – ser - orrect order score (– arg – leu – asp – val (2) (1))		
		(iii)	Amiı	no acid leu is chan	ged to pro (1)		[4]
							[Total: 11]

Page 7 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

- 10 (a) (i) Partition substance is distributed between the stationary and mobile phase or has different solubility in each phase (1)
 Adsorption substances form bonds of varying strength with or are attracted to or are held on to stationary phase. (1)
 - (ii)

Technique	Separation method
Paper chromatography	Partition
Thin-layer chromatography	Adsorption
Gas/liquid chromatography	Partition

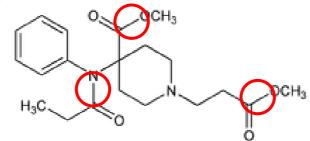
 $\begin{array}{l} 3 \text{ correct } \rightarrow (2) \\ 2 \text{ correct } \rightarrow (1) \end{array}$

- (iii) %**X** = 44% (±2) %; %**Y** = 56% (±2%) (1)
- (b) (i) They are largely composed of (carbon and) hydrogen which are active in the NMR (owtte) *or* protons/H⁺/H exist in <u>different chemical environments</u> (with characteristic absorptions) (1)
 - (ii) 2 correct displayed formulae (1)

In propanone all the protons are in a similar chemical environment (and hence there will be one proton peak.) (1)

In propanal there are (three) <u>different chemical environments</u> and hence there will be (three) <u>proton peaks</u> or three different chemical environments or three proton peaks (1) [4]

[Total: 9]


[5]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

11 (a) Any two from:

The drug can be localised in a part of the body (1) Smaller doses can be given reducing cost (1) Smaller doses can be given with fewer possible side effects (1) More immediate action / acts faster (1)

(b)

(May circle whole functional group) Any 2 circles (2)

[2]

[2]

- (c) (i) Must not react with the drug *or* must not breakdown too easily/quickly (1)
 - (ii) The swelling/hydrolysis would begin in the stomach (and the drug would be released too soon) *or* stomach is acidic or has low pH (1) [2]
- (d) Addition, condensation (1)Suitable equation for addition (1)Suitable equation for condensation (1)

(Addition equation <u>must</u> show polymeristion <u>and</u> balance – allow $nX \rightarrow X_{2n}$ or X_n or $X_{n/2}$) (Condensation can be simple reaction e.g. to single ester or amide but must balance – 2 products)

(If polymerisation RHS must show a repeat unit but can leave out other product – HC*l* etc.) [3]

(e) Hydrolysis (1)

[1]

[Total: 11]