MARK SCHEME for the October/November 2009 question paper

MMM. Hiremepapers.com

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE A/AS LEVEL – October/November 2009	9701	2	22
1	(a)	CO ₂ CO ₂ van SiO ₂ SiO ₂	has i der W is gia has i has	nple molecular/simple covalent/has discrete molecules nduced dipole – induced dipole interactions/ /aals' forces/weak intermolecular forces ant molecular/giant covalent/macromolecular strong covalent bonds		 (1) (1) (1) (1) 	[any 3]
	(b)	mini i.e.	imum	is 4-valent Si-O and at least one Si-O-Si		(1) (1)	
							[2]
	(c)	(i)	for ar	n ideal gas, any four from the following			
	. /	. /	the m there	nolecules behave as rigid spheres are no/negligible intermolecular forces		(1)	
			betwe	een the molecules		(1)	
			the m	nois between the molecules are perfectly elastic		(1)	
			the m	nolecules move in random motion		(1)	
			the m	nolecules move in straight lines		(1)	
			the ki	Inetic energy of the molecules is		(1)	
			the p	ressure exerted by the gas is due to the collisions		(')	
			betwe	een the gas molecules and the walls of the container r_{1}		(1)	
			not a	in ideal gas obeys pv = nk l	(n	nax 4)	
		(ii)	there CO ₂ ı	are intermolecular forces between CO ₂ molecules/ molecules have volume		(1)	[5]
	(d)	grap	ohite h	nas delocalised electrons		(1)	[1]
	(e)	(i)	SiO ₂	+ 2C \rightarrow SiC + CO ₂ or		(4)	
			SIO ₂	$+ 3C \rightarrow SiC + 2CO$		(1)	
		(ii)	diam	ond because SiC is hard		(1)	[2]
						[To	otal: 13]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	22

2 (a) (i)

					-		-	-	
formula c	of chloride	NaC <i>l</i>	MgCl ₂	A <i>l</i> C <i>l</i> ₃	SiC14	PC <i>l</i> ₃	SCl ₂		
oxidation	number of element in the chloride	+1	+2	+3	+4	+3	+2		
(ii)	correct oxidation nos. for NaCl to S	SCl ₂				(1)		
	loss of outer/valence electrons								
	Si to S								
	gain or sharing of outer electrons	(1)						
	to give configuration of Ar/to comp	lete octe	t			(1)	[5]	
(b) (i)	giant lattice (may be in diagram)					(1)		
(b) (i) giant lattice (may be in diagram) with strong ionic bonding						(1)		
(ii)	ionic					(1)			
()						,	,		
(iii)	-1					(1)		
(iv)	+ –								
()	:Na: [×] .H								
	correct numbers of electrons correct charges	(1) 1)						

(v)

compound	MgH ₂	A <i>t</i> H ₃	PH_3	H ₂ S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AlH_3 correct oxidation nos. for PH_3 and H_2S

(c) (i)

chloride	sodium	magnesium	aluminium
pН	7	6.5–6.9	1–4
	(no mark)	(1)	(1)

(1)

(1)

(1) (1)

(iii) 10–14

[4]

[8]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
(d) (i) cov	alent	9701	(1)	
(ii) SiC	$l_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl \text{ or}$			
SiC	$l_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl or$ $l_4 + 2H_2O \rightarrow SiO_2 + 4HCl$		(1)	[2]
			[Tota	l: 19]
(a) stage I allo stage II	$\begin{array}{rcl} NaBr+H_2SO_4 & \rightarrow & NaHSO_4+HBr\\ w & 2NaBr+H_2SO_4 & \rightarrow & Na_2SO_4+2HBr\\ C_4H_9OH+HBr & \rightarrow & C_4H_9Br+H_2O \end{array}$		(1) (1)	[2]
(b) <i>n</i> (NaBr)	$= n(HBr) = \frac{35}{103} = 0.34$		(1)	
<i>n</i> (C ₄ H ₉ C	$OH) = \frac{20}{74} = 0.27$		(1)	
NaBr/HI	Br is in an excess – no mark just for this answer			[2]
(c) method C₄H₃OH if yield is 74 g C₄l	1, using mass $I = C_4H_9Br$ is 100%, H ₉ OH → 137 g C ₄ H ₉ Br			
15.4 g C	C_4H_9OH would produce $\frac{137 \times 15.4}{74} = 28.5 \text{ g } C_4H_9Br$		(1)	

% yield =
$$\frac{22.5 \times 100}{28.5}$$
 = 78.9 (1)

or methods using moles

method 2

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208$$

for 100% yield n(C_{4}H_{9}Br) would be 0.208 × 137 = 28.5g (1)
% yield = $\frac{22.5 \times 100}{28.5} = 78.9$ (1)

method 3

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208 \text{ mol}$$

for 100% yield $n(C_{4}H_{9}Br)$ would be 0.208 mol
actual $n(C_{4}H_{9}Br) = \frac{22.5}{137} = 0.164 \text{ mol}$ (1)
% yield $= \frac{0.164 \times 100}{0.208} = 78.8$ (1) [2]

(4 × 1) [4]

Page 6				Mark Scheme: Teachers' version				Syllabus	Pape)r
				GCE A	AS LEVEL	 October 	/November 2009	9701	22	
	(b)	(i)	X allov	v ecf on ar	ny alkene abo	ove			(1)	
		(ii)			H₅ H C₂H	H₅ H — C —— H				
			allov	v ecf on ar	ny alkene ab	ove			(1)	[2]
									ITof	tal: 61
									[
5 ((a)	2,4-	dinitr	ophenylhy	drazine or	· aqueou	us alkaline iodine		(1)	
		yello	0W-0I	★ range-red	ppt.	yellow	ppt.		(1)	[2]
	(b)	colc C₄H	ourles I ₉ OH	ss gas evo + Na →	lved or Na d C₄H ₉ ONa +	issolves + ½H ₂			(1) (1)	[2]
((c)	(i)	CH ₃	CH ₂ CH ₂ CI	H ₂ CH ₂ OH				(1)	
		(ii)		H—	H H H O C—C—C—C H H H H	H H − − − H				
	(iii)		Ç	ЭН					
				\checkmark	\bigvee				(1)	[3]
	(d)	(i)	pent	an-2-ol					(1)	
		(ii)								
					CH₃CH₂CH	I=CHCH₃	CH ₃ CH ₂ CH ₂ CH=Cl	H ₂		
					produ	ıct 1	product 2			

(1 + 1) [3]

Page 7	Mark Scher	ne: Teac	hers' version	Syllabus	Pape	r
	GCE A/AS LEVE	9701	22			
(e) (i) H₃C	CH₃ —C—CH₂OH CH₃	or	CH₃C(CH₃)₂CH₂OH		(1)	
(ii) H₃C	CH₃ —C—CO₂H CH₃	or	CH ₃ C(CH ₃) ₂ CO ₂ H			
allov	v ecf on (e)(i)				(1)	[2]

[Total: 12]