

CHEMISTRY

9701/41 May/June 2019

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Question		Answer	Marks						
1(a)	M1	$[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$	6						
	M2	precipitation							
	М3	blue precipitate							
	М4	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow CuCl_4^{2-} + 6H_2O$							
	M5	igand exchange / displacement / substitution / replacement							
	М6	yellow solution							
1(b)	M1	amount of Ag ⁺ = 0.050 × 0.0224 = 1.12 × 10 ⁻³ mol (in 25 cm ³) amount of Ag ⁺ = 1.12 × 10 ⁻³ × 4 = 4.48 × 10⁻³ mol (in 100 cm³)	3						
	M2	amount of $Cl^- = 4.48 \times 10^{-3}$ mol (in 100 cm ³) mass of $Cl^- = 4.48 \times 10^{-3} \times 35.5 = 0.159$ g (in 100 cm ³) mass of S = 0.303 - 0.159 = 0.144 g (in 100 cm³) ecf							
	М3	moles of S = $0.144/32.1 = 4.49 \times 10^{-3}$ molar ratio S : Cl 1:1 \rightarrow SCl ecf							

Question	Answer	Marks
2(a)	$Sr(NO_3)_2 \rightarrow SrO + 2NO_2 + \frac{1}{2}O_2$	1
2(b)	increases	
	2 cationic radius / ion size increases (down the group)	
	M3 less polarisation/distortion of anion / nitrate ion / NO ₃ ⁻ / nitrate group	
2(c)(i)	more readily and Ca ²⁺ has a smaller ionic radius or more readily and Ca ²⁺ has a greater charge density	1

Question		Answer			
2(c)(ii)	3Ba(N	$BBa(NH_2)_2 \rightarrow Ba_3N_2 + 4NH_3$			
2(d)	M1	bond angle 104–105°	3		
	M2	explanation two lone pairs and two bonding pairs			
	М3	lone pairs repel more			

Question	Answer	Marks		
3(a)	$2ClO_3^-$ + $SO_2 \rightarrow 2ClO_2$ + SO_4^{2-}	1		
3(b)(i)	Cl in ClO ₂ gets both oxidised and reduced or Cl goes from +4 \rightarrow +5 and +4 \rightarrow +3	1		
3(b)(ii)	$M1 \qquad ClO_2 + 2OH^- \rightarrow ClO_3^- + H_2O + e^-$	2		
	$M2 \qquad ClO_2 + e^- \rightarrow ClO_2^-$			
3(c)(i)	M1 Li \rightarrow Li ⁺ + e ⁻ and I ₂ + 2e ⁻ \rightarrow 2I ⁻	2		
	$\mathbf{M2} \qquad 2Li + I_2 \rightarrow 2Li^+ + 2I^-$			
3(c)(ii)	$E^{\text{e}_{\text{cell}}} = 0.54 - (-3.04) = +3.58 \text{ V} [1]$	1		
3(c)(iii)	M1 amount of Li = $0.10 / 6.9 = 1.45 \times 10^{-2} \text{ mol } [1]$	3		
	Q needed = 96500 × 1.45 × 10 ⁻² = 1399 (1398.55) C [1] ecf			
	M3 $t = 1399 / (2.5 \times 10^{-5}) = 5.6 \times 10^7 \text{ s} [1] \text{ ecf 2sf min}$			

Question	Answer	Marks				
4(a)	All shapes required for mark	1				
	p s d					
4(b)	both cadmium ions have full d subshells					
4(c)(i)	donates one lone pair to the central metal ion	1				
4(c)(ii)	M1 one 3D diagram of $[Cd(CH_3NH_2)_4(H_2O)_2]^{2+}$					
	M2 cis and trans structures					
	$H_{2}O_{H_{1},I_{1},I_{1}} \downarrow H_{2}O_{H_{1},I_{1},I_{1}} \downarrow H_{2}O_{H_{2},I_{1},I_{1},I_{1}} \downarrow H_{2}O_{H_{2}} \downarrow H_{2}O_{H_{2}$					
4(d)(i)	equilibrium constant for the formation of a complex ion in solution / solvent [1]	1				

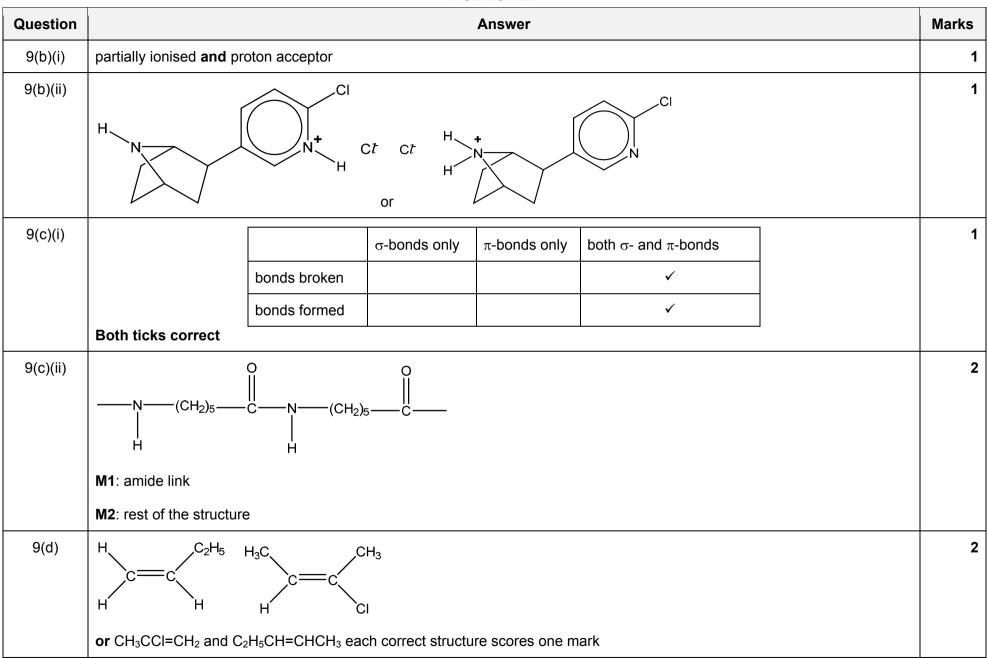
Question		Answer					Marks	
4(d)(ii)				decreases	no change	increases		2
			K _{stab}	✓				
			$[[Cd(CH_3NH_2)_4(H_2O)_2]^{2+}]$	✓				
	M1	M1 both ticks correct [1]						
	M2	M2 equilibrium moves to the left as the (forward) reaction is exothermic [1]						
4(d)(iii)	[CdEl	[CdEDTA] ²⁻ and larger K _{stab} value				1		
4(e)	CH₃N	$CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$					1	
4(f)(i)		$CH_3COCl + CH_3NH_2 \rightarrow CH_3CONHCH_3 + HCl$					2	
	M1 Correct formulae of CH ₃ COC <i>l</i> or CH ₃ CONHCH ₃							
	M2	rest of the equation	on					
4(f)(ii)	conde	ensation or addition	-elimination					1

Question	Answer						
5(a)(i)	M1 : using expt 2 and 3, $[NH_3] \times 2$, rate >	M1 : using expt 2 and 3, $[NH_3] \times 2$, rate $\times 4$ so order with respect to $[NH_3] = 2$					
	M2 : using expt 1 and 2, $[ClO^-] \times 2$ and $[NH_3] \times 2$, as rate $\times 8$ (=2 ² * x) so order with respect to $[ClO^-] = 1$						
5(a)(ii)	rate = <i>k</i> [NH ₃]²[C <i>l</i> O [−]]		1				
5(a)(iii)	M1: $k = 0.256 / (0.200 \times 0.100^2)$	<i>k</i> = 128	2				
	M2: Units	dm ⁶ mol ⁻² s ⁻¹					

Question	Answer	Marks
5(a)(iv)	curve / line showing k increasing as temperature increases	1
5(b)(i)	M1: plot a graph of [I⁻] against time	2
	M2: constant half-lives	
5(b)(ii)	$ClO^- + I^- \rightarrow IO^- + Cl^-$	1
5(b)(iii)	step 2 and Cl is reduced / oxid no. decreases / oxid no. $+1 \rightarrow -1$ or step 2 and I is oxidised / oxid no. increases / oxid no. $-1 \rightarrow +1$	1

			PUBLISHE				
Question			Answe	r			Marks
6(a)		energy change	always positive	always negative	either negative or positive		1
		bond energy	~				
		enthalpy of formation			✓		
	both ticks correct						
6(b)	(energy change) when 1 m	nole of gaseous atoms ar	e formed (fror	n an element	in its standard state)	1
6(c)	$\frac{2 \Delta H_{at}}{Br_2(l)}$ $\frac{Br_2(g)}{Br_2(g)}$ M1: correct cycle: formulae M2: use of 1 × 193 and 2 × M3: for the correct sum an ΔH^{e}_{vap} (= (2 × 112) – (193	< (112) d answer ecf from M2	И2 and M3]				3
6(d)	more endothermic and gre	ater Van der Waals / Lond	lon / induced c	dipole-dipole fo	orces both		•
6(e)(i)	(energy change) when 1 m			· ·			
		_					
6(e)(ii)	M1: Br has a smaller ionic						2
	M2: stronger (ion-dipole) a	ttractions with water mole	cules				

May/June	2019
----------	------


Question	Answer	Marks
7(a)(i)	M1: reduction / hydrogenation	2
	M2: H ₂ + Ni / Pt catalyst	
7(a)(ii)	M1: benzene (120°) <u>and</u> cyclohexane (109.5°)	2
	M2 : as π -bonds are transformed into σ -bonds	
7(b)(i)	$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	3
7(b)(ii)	HSO_4^- + $H^+ \rightarrow H_2SO_4$	1
7(c)	M1: C ₁₂ H ₂₅ Br and halogen carrier e.g. A <i>l</i> Br ₃ (+ heat)	2
	M2: electrophilic substitution	
7(d)(i)	$K_{a2} = \frac{[H^+][SO_4^{2-}]}{[HSO_4^{-}]}$	1
7(d)(ii)	K_{a} of H ₂ SO ₄ is larger than K_{a2}	1

Question		Answer			
7(e)	M1 :	$[H^+] = 10^{-2.90} = 1.26 \times 10^{-3}$	2		
	M2 :	$K_{a} = [1.26 \times 10^{-3}]^{2} / 0.025 = 6.3 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$			

Question	Answer						
8(a)(i)	no. of carbons = 100 × 1.25 / (22.65 × 1.1) (= 5.02)						
8(a)(ii)	M1: C ₂ H ₅ O	2					
	M2: $C_3H_5O^+$ (positive sign required for m / e = 57 fragment)						
8(b)	TMS: Reference CDCl ₃ : Solvent						
8(c)(i)	M1: CH ₃ CO	3					
	M2 : CH ₃ CH ₂ O						
	M3 : (CO)CH ₂ O						
8(c)(ii)	CH ₃ COCH ₂ OCH ₂ CH ₃						
8(d)	HCO ₂ C(CH ₃) ₃	1					
8(e)(i)	this is a (carbon) atom which has four different atoms or groups attached to it	1					
8(e)(ii)	CH ₃ CH ₂ CH(CH ₃)COOH	1					

Question	Answer	Marks	
9(a)	$M1: CH_3COCl > CH_3CH_2Cl > C_6H_5Cl$		
	 M2 & M3 any two from: in C₆H₅Cl (no hydrolysis) C-Cl bond is part of delocalised system OR p-orbital on Cl overlaps with π system OR electrons from Cl overlap with π system CH₃COCl carbon in C-Cl bond is more electron deficient since it is also attached to an oxygen atom (ora) or C-Cl bond strength is weakest in CH₃COCl (ora) CH₃CH₂Cl carbon in C-Cl bond strengthened by positive inductive effect of alkyl group 		

May/June 2	2019
------------	------

Question	Answer					
9(e)	C-C bonds are non-polar / polyalkenes cannot be hydrolysed and polyamides can be broken down by hydrolysis					
9(f)(i)		OH		1		
9(f)(ii)	M1 :	step 1:	$CH_3COCl + AlCl_3$ [1]	3		
	M2 :	step 2:	NaBH ₄ / LiA <i>l</i> H ₄ [1]			
	M3 :	step 3:	conc. H ₂ SO ₄ , heat [1]			

