

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/35

Paper 3 Advanced Practical Skills 1

May/June 2019

MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

© UCLES 2019 Page 2 of 11

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 11

2 marks

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

				_	_		
Question				A	nswer		Marks
1(a)	I All thermor	neter readings a	are recorded to	.0 or .5 °C.			1
Examiner to	calculate Super	visor's maximum	n ∆T from table	and candidate	e's ∆T from same	volumes.	
Calculate th	ne difference betw	veen the two val	ues.				
$\Delta T = T_{\text{max}} -$	(T _{acid} + T _{alkali})/2	(correct to 1 DF	P)				
1(a)	II Award this	mark based on t	the tolerance ta	able			1
	III Award this	mark based on t	the tolerance ta	able			1
	Sup ΔT _{max}	> 16.0 °C	8.5–16.0 °C	4.5–8.0 °C	≤ 4.0 °C		
	1 mark	δ = 2.0 °C	δ = 1.5 °C	δ = 1.0 °C	δ = 0.5 °C		

 δ = 0.5 °C

not available

© UCLES 2019 Page 4 of 11

 δ = 1.0 °C

 δ = 1.0 °C

Question	Answer	Marks
1(b)(i)	Linear scales chosen so that graph occupies more than half the available length for both axes (including extra 2 °C for y-axis). (points on y-axis and 0–40 cm³ on x-axis occupying at least 5 large squares on x-axis and 6 large squares on y-axis)	1
	AND axes labelled with name and / or unit	
	II All points recorded (minimum 7 recorded) accurately plotted	1
	If the point should be on a line it must be on the line. If the point should not be on a line it must not be on a line and must be correct to within half a small square.	
	III Two lines of best fit drawn (straight or smoothly curved lines) – one for increasing temperature and one for decreasing temperature.	1
	Ignore points marked anomalous	
1(b)(ii)	Correct volume of FA 2 read from the intersection (to within .25 cm³ of examiner value)	1
	AND Volume FA 1 = 40.0 – volume FA 2 Volumes of FA 1 and FA 2 must be given to 1 dp	
	Allow discontinuity for intersection.	
	A continuous curve cannot score either mark (b)(i)III or (b)(ii). Neither (b)(i)III nor (b)(ii) are available if there is no max T.	
1(c)(i)	Correctly calculates $\frac{2.0 \times \text{Vol}(\text{FA2 in (b)})}{1000}$ to 3 or 4 sf	1
1(c)(ii)	Correct expression $\frac{(c)(i) \times 1000}{\text{Vol}(\text{FA 1 in (b)})}$ and answer to 3 or 4 sf	1

© UCLES 2019 Page 5 of 11

Question	Answer	Marks
1(d)	Explain how to get ΔT (from graph or table) (T_{max} – initial T or T_{max} – average of initial Ts)	1
	Allow use rise in temperature.	
	Use of Q = mc∆T	1
	Divide heat energy produced / moles of alkali neutralised	1
	(moles of alkali neutralised = (c)(i))	

© UCLES 2019 Page 6 of 11

Question	Answer	Marks
2(a)	I The following data must be shown	1
	 burette readings and titre for rough titration 2 × 2 'box' showing both accurate burette readings 	
	'Correct' headings and units are not required for this mark	
	II Headings and units correct for accurate titration table and headings match readings.	1
	 initial / start and (burette) reading / volume + unit final / end and (burette) reading / volume + unit titre or volume / FA 4 used / added + unit Units: (cm³) or / cm³ or in cm³ or cm³ by every entry 	
	III All accurate burette readings to 0.05 cm ³	1
	IV The final accurate titre recorded is within 0.10 cm³ of any other accurate titre.	1

© UCLES 2019 Page 7 of 11

Question	Answer	Marks
2(a)	Award V if $0.50 < \delta \leqslant 0.80 \text{ cm}^3$	1
	Award VI if $0.30 < \delta \leqslant 0.50 \text{ cm}^3$	1
	Award VII if $\delta \leqslant 0.30 \text{ cm}^3$	1
2(b)	Candidate must average two (or more) titres that are all within 0.20 cm ³ . Working must be shown or ticks must be put next to the two (or more) accurate titres selected.	1
2(c)(i)	Final answers to (ii)–(iv) to 3 or 4 sf	1
2(c)(ii)	Correctly calculates $\frac{0.0353 \times 25}{1000} = 8.825 \times 10^{-4}$	1
2(c)(iii)	Correctly calculates $8.825 \times 10^{-4} \times 2 = 1.765 \times 10^{-3}$	1
	Allow ecf from (c)(ii)	
2(c)(iv)	Correctly uses $\frac{(\mathbf{c})(\mathbf{iii}) \times 1000 \times 250}{\text{volume in } (\mathbf{b}) \times 10}$	1

© UCLES 2019 Page 8 of 11

Question	Answer	Marks
2(d)	One of:	1
	Experiment 1 is more accurate: Intersection (allow extrapolation) gives accurate max T or gives accurate volumes needed for neutralisation / calculation or Extra dilution step increases errors in titration values.	
	OR	
	Experiment 2 is more accurate: Acid diluted so 1 drop contains fewer moles so end point more precise or More precisely calibrated / smaller % volume error and in apparatus / pipette / burette for FA 2	
	OR	
	Both of equal accuracy because concentrations are very similar (in Experiments 1 and 2).	
	Reject expt 2 is more accurate as heat is lost through the top of the cup. (ΔT is in a range such that the heat energy loss is minimal in the time taken to complete the experiment.)	
2(e)	Correctly calculates	1
	M_r CH ₃ COOH = 60 and 60 × (c)(iv) (Default value = 124.8 g dm ⁻³)	
	or 112.3 / 60 and compare with (c)(iv) (112.3 / 60 = 1.87) or 112.3 / (c)(iv) and compare with 60	
	(Default $M_r = 54 / 54.0 / 53.99$)	

© UCLES 2019 Page 9 of 11

Question			Answer		Marks
		FA 5 = FeC <i>l</i> ₃ (aq); F	FA 6 = $H_2SO_4(aq)$; FA 7 = $AgNO_3(aq)$		
3(a)	Award one mark for ev	ery two correct observations (*	·)		10
	test		observations		
	lesi	FA 5	FA 6	FA 7	
	+ Na ₂ CO ₃		effervescence / fizzing / bubbling *	off white / pale brown / cream ppt *	
			gas / CO ₂ turns limewater milky / chalky / cloudy white / forms white ppt *		
	L Ma		effervescence / fizzing / bubbling *	black ppt / black solid formed *	
	+ Mg		gas / H ₂ pops with lighted splint *		
	+ AgNO ₃	white ppt * Allow off-white ppt	no change / no (visible) reaction / no ppt *	no change / no (visible) reaction / no ppt *	
	+ NH ₃	brown / red-brown / orange-brown / rust ppt *	Ignore	Ignore	
	+ Ba(NO ₃) ₂	no change / no (visible) reaction / no ppt *	white ppt *	no change / no (visible) reaction / no ppt * Ignore faint white ppt	
	+ HCl	Ignore	ppt insoluble * Allow no change	white ppt * Soluble in excess is CON	
	+ NaOH	brown / red- brown / orange- brown / rust ppt and insoluble in excess *	no change / no (visible) reaction / no ppt / temp increases *	(dark) brown / grey-brown ppt and insoluble in excess *	
	+ FA 7	white ppt * allow off-white ppt	no change / no (visible) reaction / no ppt *		

© UCLES 2019 Page 10 of 11

Question				Answer	
3(b)		FA 5	FA 6	FA 7	
	cation	Fe ³⁺ *	H+ *	Ag+/ unknown *	
	anion	C <i>l</i> -*	SO ₄ ^{2-*}	unknown *	
	2 * = 1 mark (round down)				
3(c)	precipitation reaction involving FA 5 Fe $^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_3(s)$				
	or				
	Ag ⁺ (aq) +	$Cl^-(aq) \rightarrow AgCl$	(s)		

© UCLES 2019 Page 11 of 11