

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	21

1 (a)

(a)								1	
	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₁₀	SO ₂	C <i>l</i> ₂ O ₇		
	alkaline	basic	amphoteric	acidic	acidic	acidic	acidic		
	alkalinebasicamphotericacidicacidicacidic $alkalinebasicamphotericacidicacidicacidicMgO is basic – allow alkalineAl_2O_3 is amphotericSiO_2, P_4O_{10}, and SO_2 are all acidicany two from:sodium, phosphorus, sulfur and chlorinetwo names required(i) any three from:floatsvigorous/violent reaction occursmelts/forms a spheremovesdisappears – allow dissolveseffervescence/gas produced(ii) Na + H_2O \rightarrow NaOH + 1/2H2or2Na + 2H_2O \rightarrow 2NaOH + H2$							(1)	
	MgO is basi	c – allow alł	aline					(1)	
	A <i>l</i> ₂O₃ is amp	ohoteric						(1)	
:	SiO ₂ , P ₄ O ₁₀ ,	and SO_2 ar	e all acidic					(1)	[4]
(c)	floats vigorous melts/fo moves disappe	s/violent rea orms a sphe ears – allow	re dissolves				(an	y 3)	
(or							(1)	[4]
(d)	during t volcanic	he extractio c eruptions/t	fi n of metals fro	rom car exh om sulfide o	austs or res or			(1)	
(ii) H ₂ SO ₄ or								
			formula requ	uired				(1)	
(i	ii) acid raiı or its cons		.g. damage t damage t deforesta	o crops, pla	nts, marine	life			
	or SO₃ is t	oxic						(1)	[3]
• •		ng agent/an	tioxidant						
	or t kills bactei	ria						(1)	[1]

	Page 3		Syllabus	Paper	,
		GCE AS/A LEVEL – May/June 2012	9701	21	
	(f) (i)	$ \bigcirc \bigcirc$			
				(1)	
	(ii)	180°		(1)	[2]
				[Total:	15]
2	cor	$H_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$ rect products rectly balanced equation		(1) (1)	[2]
	(b) (i)	NaOH + HC $l \rightarrow NaCl + H_2O$		(1)	
	(ii)	$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$		(1)	
	(iii)	$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$		(1)	
	(iv)	n(NaOH) used up = 0.10 - 0.0312 = 0.0688 = 0.07		(1)	
	(v)	$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$		(1)	
	(vi)	mass of $(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$		(1)	
	(vii)	percentage purity = $\frac{4.5408 \times 100}{5.00}$ = 90.816 = 90.8		(1)	[7]

	Page 4				ark Schen					Syllabus	Pape	r
				GC	E AS/A LI	EVEL -	– May/J	une 2012		9701	21	
3	(a)			$_{2}(g) \rightarrow CO$ alpy change		nange/	heat cha	ange when			(1)	
				e of a compo		iege/					(1)	
		is fo	ormed	d from its ele	ements in	their st	tandard s	states			(1)	[3]
	(b)	(i)	ΔH^{e}_{f}	/kJ mol ⁻¹	CO ₂ (g) -394	+ 3H	H₂(g) ← 0	[≥] CH₃OH(g) –201	+	H ₂ O(g) -242		
				_{reaction} = –20 kJ mol ^{–1})1 + (–242	.) – (–3	394)				(1)	
				ect sign							(1) (1)	
		(ii)	remo	oval of CO ₂	from the a	tmosp	here				(1)	
			CO ₂	is a greenh	ouse gas/	causes	s global v	warming			(1)	[5]
	(c)			art, in each c to gain the e				correctly sta	ated			
		hig	her to	emperature)							
				educed/equ				rse reaction i	is and	othermic	(1) (1)	
		Dec	ause			Jourierin				othermic	(1)	
		-	-	oressure ncreased or	oquilibriu	m aoos	e to RHS	2			(1)	
								, es/molecules	s on Ll	HS	(1)	
				atalyst							(4)	
		•		es not chang and backwa		eedec	່ງ up by s	ame amoun	t		(1) (1)	[6]
											[Total	: 14]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	,
	GCE AS/A LEVEL – May/June 2012		9701	21		
4	(a) (i) $C_2H_5OH \rightarrow C_2H_4 + H_2O$			(1)		
	(ii) elimination or dehydration		ination or dehydration		(1)	
	sulfuri		sphoric acid or concentrated sulfuric acid uric acid must be 'concentrated' v aluminium oxide		(1)	[3]

(b)

	with HBr	with MnO₄ [−]
colour at start	colourless	purple or pink
colour after reaction	colourless	colourless or decolourised
structural formula of product	CH₃CH₂Br	HOCH ₂ CH ₂ OH

with hydrogen bromide		
from colourless to colourless both colours required		
do not allow 'clear' instead of colourless	(1)	
CH ₃ CH ₂ Br	(1)	
with potassium manganate(VII)		
from purple/pink to colourless/decolourised both colours required	(1)	
носнуснуон	(1)	[4]
		r.1

(c) (i)
$$C_6H_{10}$$
 (1)

(ii)

Br Br

accept answers which have $-CH_2$ - in the ring (1)

(iii) electrophilic (1) addition (1)

(iv)

CO₂H CO₂H

or

$HO_2C(CH_2)_4CO_2H$ or		
$HO_2CCH_2CH_2CH_2CO_2H$ (1)	
accept answers which have –CH ₂ – in the ring		[5]

[Total: 12]

	Page 6	Mark	Scheme: Teachers' version	Syllabus	Paper	
		GCE A	S/A LEVEL – May/June 2012	9701	21	
5	(a) car	oxylic acid or –CO ₂	Н ог –СООН		(1)	[1]
	(b) (i)	alcohol			(1)	
	(ii)	$n(H_2) = \frac{160}{24000} =$	6.67 × 10 ^{−3} mol		(1)	
		$n(H \text{ atoms}) = 2 \times 6$	$6.67 \times 10^{-3} \text{ mol} = 1.33 \times 10^{-2} \text{ mol}$		(1)	
	(iii)	$n(\mathbf{X}) = \frac{0.600}{90} = 6$				
		<i>n</i> (X) : <i>n</i> (H atoms) = 1 : 2	= 6.67 × 10 ⁻³ : 1.33 × 10 ⁻²			
		· · -	pup produces one H atom groups		(1)	[4]
	(c) (i)				(1)	
	(ii)	HOCH ₂ CH(OH)CH(allow the <i>gem</i> diols	O as the minimum (HO)₂CHCH₂CHO or CH₃C(OH)₂CHO		(1)	
	(iii)	(iii) $HOCH_2CH(OH)CO_2H$ or $HOCH_2CH(OH)CO_2^-$			(1)	[3]
	(d) (i)	HOCH ₂ CH(OH)CH ₂	OH		(1)	
	(ii)	(ii) HO ₂ CCOCO ₂ H				[2]
					[Total:	10]