

INTERNATIONAL A-LEVEL BIOLOGY BL05 (9610)

Unit 5 Synoptic paper

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 $\label{lem:copyright @ 2024 OxfordAQA International Examinations and its licensors. \ \ All \ rights \ reserved.$

Question	Marking guidance	Mark	Comments
01.1	Higher magnification than SEM or light microscope;	2	Allow high magnification
			Ignore magnification = x27 500
	Internal details visible or high resolution or high definition;		Ignore only 2-D, ignore not in colour

Question	Marking guidance	Mark	Comments
01.2	Drawing large and clear;	3	Smooth lines, not sketchy
	Correct shape with envelope and grana;		
	Correct internal details – thylakoids in grana and intergranal regions, vesicles, lipid droplet;		

Question	Marking guidance	Mark	Comments
01.3	160 × 1000 27 500	2	Allow one mark if wrong order of magnitude
			Allow ± 1 mm for measured length
	5.82 / 5.8 / 6;		Allow one mark for answer correctly derived from incorrect measurement

Question	Marking guidance	Mark	Comments
01.4	To prevent denaturation of proteins / enzymes / cytochromes;	1	ignore optimum pH

Question	Marking guidance	Mark	Comments
01.5	1. Lose (only) a little <u>water</u> by osmosis/diffusion;	2	Allow so there is no (net) gain of <u>water</u> by osmosis
	2. Chloroplasts remain intact or do not burst;		 Ignore reference to isotonic Allow do not shrink too much Ignore reference to cells

Question	Marking guidance	Mark	Comments
01.6	1. So (opposite) tubes are balanced in the centrifuge;	2	
	2. Does not damage centrifuge;		
	OR		
	1. Different volumes would have different numbers of chloroplasts;		
	2. Which would give different rates of reaction or would prevent valid comparisons;		

Question	Marking guidance	Mark	Comments
01.7	Each tube differs in one way from Tube 1;	2	Allow named factors: 2 chloroplasts + 3 light + 4 DCPIP
	To show the need for the missing factor in the reaction;		

Question	Marking guidance	Mark	Comments
01.8	1. Electrons/H ⁺ ions from water;	4	Allow photolysis of water
	2. Electrons excited by light;		2. Allow light raises electrons to higher energy level
	3. Electrons lost from chlorophyll;		
	4. Electrons and H ⁺ ions combine with DCPIP to decolourise DCPIP		
	or to leave the green colour of the chloroplasts / chlorophyll;		

Question	Marking guidance	Mark	Comments
02.1	Constant volumes of potato filtrate and buffer solution;	7	
	2. Incubate potato filtrate + buffer in water bath / at 25°C (for 5–10 min);		
	3. Inject H ₂ O ₂ solution and measure volume of O ₂ in given time;		
	4. Raise syringe so levels inside and out are same before measuring;		
	5. Repeat at least twice more and calculate mean (and SD) for each concentration;		
	6. Repeat with same vol. of different concentrations of H ₂ O ₂ solution;		
	7. Further detail – eg cleaning test tube between experiments or method of filling syringe with water by opening tap and submerging or method of diluting H ₂ O ₂ ;		

Question	Marking guidance	Mark	Comments
02.2	 Plot line graph of volume of oxygen against concentration of H₂O₂; Add error bars to represent standard deviation; Line graph plotted because the two variables are continuous; 	3	must distinguish dependent and independent variables

Question	Marking guidance	Mark	Comments
02.3	Overlap of SDs;	2	
	Use of data: (at 40%) 8.0+0.61 = 8.61 and (at 60%) 9.2–0.62 = 8.58;		

Question	Marking guidance	Mark	Comments
03.1	Reverse transcriptase;	1	

Question	Marking guidance	Mark	Comments
03.2	Restriction endonuclease	1	
	OR		
	Restriction enzyme;		

Question	Marking guidance	Mark	Comments
03.3	To join pieces of DNA which are complementary (by base pairing);	1	

Question	Marking guidance	Mark	Comments
03.4	4;	1	

Question	Marking guidance	Mark	Comments
03.5	2 bands merge OR only 4 bands;	2	
	New band formed at heavier position OR nearer to origin;		Allow new band formed higher up

Question	Marking guidance				Mark	Comments	
04.1		Cro	ess 1	Cross	2	4	Cross 1
	Parental genotypes	X ^B Y and	X_pX_p	X^bY	and X ^B X ^B		P genotypes + gametes correct = one mark
	•	X ^B Y	V h	X ^b Y	XΒ		F ₁ genotypes + phenotypes correct = one mark
	Gametes	Xº T	Χ _p	X° Y	X ²		Cross 2
	F₁ genotypes	XBXp	Χ ^b Υ	XBXp	X ^B Y		P genotypes + gametes correct = one mark
	1 gonotypoo	A A	X I	A A	X 1		F ₁ genotypes + phenotypes correct = one mark
	Phenotypes:	Tortoiseshell	Orange	Tortoiseshell	Black		
	Sex	female	male	female	male		

Question	Marking guidance	Mark	Comments
04.2	 Yes, because: 1. With 3 degrees of freedom; 2. Closest to χ² = 2.60 is χ² between 0.352 and 6.25	3	If incorrect number of degrees of freedom, still allow mp2 and mp3 with appropriate values 3. Ignore 'results' are due to chance 3. Ignore the 'results' are not significant

Question	Marking guidance	Mark	Comments
05.1	Chromatids/chromosomes cannot be separated by microtubules / spindle	2	If neither 1. nor 2. given, allow one mark for prevents spindle formation
	or		
	Chromatids/chromosomes cannot join to microtubules;		
	2. Prevents mitosis / cell division;		

Question	Marking guidance	Mark	Comments
05.2	Reduces/prevents mutation in proto-oncogene or in tumour suppressor gene;	1	Allow prevents activation of proto-oncogene or prevent inactivation of tumour suppressor gene

Question	Marking guidance	Mark	Comments
05.3	1. Mice vary in size / mass;	3	
	2. Gives same concentration in (body fluids of) each mouse;		
	3. Otherwise could not compare or could not obtain valid results;		

Question	Marking guidance	Mark	Comments
05.4	As a control (since resveratrol is dissolved in DMSO)	2	
	or because group 2 has resveratrol and DMSO;		
	Otherwise could not tell if effect (in group 2) was due to resveratrol or to DMSO;		

Question	Marking guidance	Mark	Comments
05.5	Vincristine is better than resveratrol – mice survive longer; Resveratrol is ineffective as it gives similar results to control / DMSO;		For full marks, must have at least one point from each of the 3 groups and any one other
	3. None survive more than 31 days so neither is very useful;4. Dose of vincristine is much lower than dose of resveratrol (only 1/20);		
	 5. Only investigated one form of cancer / only leukaemia; 6. Do not know of any side effects; 7. Only tested on mice so do not know effect on humans; 8. Only 16 mice in each group or 48 total – may not be representative; 		

Question	Marking guidance	Mark	Comments
06.1	Making carbohydrates available:	6 max	,
	 Digestion – starch to maltose using amylase in saliva or in pancreatic juice; 		available and uses of carbohydrates
	Digestion – maltose to glucose by membrane-bound maltase in small intestine;		Allow references to other membrane-bound disaccharidases
	 Absorption – active transport or facilitated diffusion or co-transport with Na⁺ ions; 		
	4. Transport from gut to cells in solution or in blood plasma;		
	 Enters body cells by facilitated diffusion or via transport proteins or by active transport; 		
	Uses of carbohydrates:	6. Allow references to glycolysis / anaerobic and Krebs	
	6. Glucose as a source of energy/ATP – via respiration;		cycle / aerobic 6. Do not allow making energy
			6. Allow further details, eg phosphorylation, oxidation via NAD, FAD, ETS
	7. Glycogen (animals) for energy storage;		
	8. Glucose used for making other named substances;		8. Allow conversion to glycerol and fatty acids and lipids
	Antibodies = glycoprotein – immune response to pathogens;		Allow conversion to amino acids and proteins
	10. Antigens – eg ABO blood group antigens		
	11. Ribose in RNA / ATP / NAD(P);		
	12. Deoxyribose in DNA – genes and their expression;		
	13.Glucose for maintenance of osmotic potential of blood – maintain osmotic balance for body cells;		

Question	Marking guidance	Mark	Comments
06.2	Remove sample for testing	6	
	1. For starch: add I ₂ /KI solution;		1. Allow iodine solution
	2. Blue-black = positive for starch;		
	(Filter remainder to remove starch)		
	Test sample of filtrate with I ₂ /KI solution		
	If blue-black, re-filter until turns yellow		
	remove sample from (starch-free) filtrate		
	3. Test for reducing sugar: Benedict's solution + heat;		
	4. Orange = positive for reducing sugar;		4. Allow red/yellow
	5. Spin down pellet of precipitate using centrifuge or filter		
	Remove supernatant and add HCI + heat		
	(Cool and) neutralise with alkali (test with indicator paper);		
	Add Benedict's solution + heat turns orange = positive for non-reducing sugar;		Only allow mp6 if an attempt to remove reducing sugars has been made

Question	Marking guidance	Mark	Comments
06.3	If glucose concentration is too high, it is lowered by:	6 max	Max 3 marks for lowering glucose concentration
	Pancreas (detects and) releases <u>insulin</u>		
	Insulin combines with cell-surface membrane receptor		
	Glucose channel proteins inserted into membrane causing glucose uptake		
	4. Enzyme (/ phosphorylase) activated		
	5. Glucose turns into glycogen / glycogenesis		
	6. Glucose turns into fatty acids / lipid		
	7. Glucose used in respiration		
	If glucose concentration is too low, it is raised by:		Max 3 marks for raising glucose concentration
	8. Pancreas (detects and) releases glucagon		Than a mame for raising grasses concernation
	or Adrenal glands release <u>adrenaline</u>		
	Glucagon/adrenaline combines with cell-surface membrane receptor		
	10. Activates enzyme (/ adenylate cyclase): ATP turns into cAMP		
	11. (cAMP) activates (kinase) enzyme: glycogen produces glucose (phosphate) / glycogenolysis		
	12. Glycerol / fatty acids / AcCoA produces glucose or amino acids produce glucose / gluconeogenesis		

Question	Marking guidance	Mark	Comments
06	Quality of written communication	2	Award mark for overall performance in 06.1, 06.2 and 06.3
	These are awarded for correct use of scientific terms and the ability to present a clear, logical account. They are not awarded for spelling, punctuation and grammar.		
	2 marks for		
	an answer in which technical terms are used correctly throughout and the accounts are presented clearly and logically.		
	1 mark for		
	an answer in which most technical terms are used correctly and most of the accounts are presented clearly and logically.		
	<u>0 marks</u> for		
	an answer in which few technical terms are used correctly or the accounts are seldom presented clearly and logically.		