

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL AS BIOLOGY (9610)

BL01

Unit 1 The Diversity of Living Organisms

Mark scheme

January 2024

Version: 1.1 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Question	Marking guidance	Mark	Comments
01.1	Arrow point to anywhere that the end of a tracheole would meet the muscle;	1	

Question	Marking guidance	Mark	Comments
01.2	= 3.5mm ³ ;;	2	Allow one mark for
			Use of × 50
			OR
			Use of 0.07

Question	Marking guidance	Mark	Comments
01.3	1.Many tracheae: one trachea;	3 max	1.Allow has chitin/no cartilage: no chitin/has cartilage
	2.No alveoli/no bronchioles/has tracheoles: alveoli/bronchioles/no tracheoles;		2.Allow fluid-filled terminal tracheoles: alveoli with fluid lining
	3.(Many) spiracle <u>s</u> : no spiracle <u>s;</u>		
	4.Direct to tissues: via blood/capillaries;		

Question	Marking guidance	Mark	Comments
01.4	Advantage	2	1.Allow short diffusion distance/faster diffusion
	1.Gas exchange direct with muscle/tissue/cells		1.Allow spiracles closing to reduce water loss
	OR		
	No need for a circulatory system (to transport gases);		
	Disadvantage		
	2.Limits (insects) size		
	OR		
	Takes up a lot of space;		

Question	Marking guidance	Mark	Comments
01.5	1. Increasing the trachea length increases the percentage respiratory increase (at all flutter speeds);	3 max	
	 2. The higher the flutter rate, the greater increase in the percentage respiratory increase; 3. Little difference in the percentage respiratory increase between flutter speeds of 14 and 24s⁻¹; 4. Flutter speeds of 14 and 24s⁻¹/higher flutter speeds begin to level off and flutter speed of 4/low flutter speed does not level off; 		 2.Allow low/4s⁻¹ flutter rate gives least increase in the percentage respiratory increase OR 24s⁻¹ flutter rate gives the greatest increase in the percentage respiratory increase

Question	Marking guidance	Mark	Comments
02.1	Correctly drawn amino acid;	1	

Question	Marking guidance	Mark	Comments
02.2	(Di)peptide;	2	Reject polypeptide
	Water;		

Question	Marking guidance	Mark	Comments
02.3	Yeast, Frog, Turtle, Penguin, Kangaroo, Donkey, Rabbit;	2	Allow one mark for 4 species in the correct order

Question	Marking guidance	Mark	Comments
02.4	Advantage:	2	
	1.Same/similar amino acid sequence in all individuals of the same species;		
	2.Cytochrome c is present in all species (so you can compare eukaryotes);		
	Disadvantage:		
	3.Cannot be used on extinct species/prokaryotes		2 Allow idea of anda baing degenerate
	OR		3.Allow idea of code being degenerate
	Amino acid sequences not as accurate as using DNA/mRNA sequences		
	OR		
	Other proteins may differ more (than cytochrome c) so differences not seen;		

Question	Marking guidance	Mark	Comments
03.1		4 max	Mark in pairs: Improvement and Explanation
			Only allow explanation after a suitable improvement
	1.Improvement – Use intermediate concentrations of sucrose solution;		1.Ignore use more concentrations
	2.Explanation – To obtain a more accurate value for the concentration that gives no change in mass;		
	3.Improvement – Carry out repeats (at the same concentration);		
	4.Explanation – Allows a mean to be calculated/reduces the effect of		4.Allow take/find an average
	anomalies/allows anomalies to be identified;		4.Reject prevents anomalies
	5.Improvement - Use <u>same</u> cork borer;		5. Allow one/a cork borer
	6.Explanation – To get the same diameter/width/SA:vol;		6. Ignore same size
	7.Improvement – Blot melon directly after cutting;		
	8.Explanation – To remove excess liquid;		
	9.Improvement – Use same (type/age of) melon;		9.Allow same location of sample/ remove 'skin'
	10.Explanation – Water potential may differ between melons;		10. Allow solute potential
			10.Ignore sucrose concentration may differ between melons

Question	Marking guidance	Mark	Comments
03.2	Cork borer/scalpel – cut downwards onto a tile/away from you;	1	
	OR		
	Broken glass – keep test tubes away from the edge of the desk;		

Question	Marking guidance	Mark	Comments
03.3	-26.04;;	2	Allow one mark for 0.69 or 26.04 or -26 / -26.0
			/ -26.03 / -26.0377

Questio	Marking guidance	Mark	Comments
03.4	Allows a comparison despite starting masses being different;	1	

Question	Marking guidance	Mark	Comments
03.5	The mass of the cylinders will become constant (after 24 hours);	1	Allow reference to equilibrium/described reached

Question	Marking guidance	Mark	Comments
03.6	1.Prevents evaporation/loss of <u>water/solvent</u> from the sucrose solution overnight;	2	1.Reject evaporation/loss of solution
	2. Increasing the concentration/decreasing the water potential;		

Question	Marking guidance	Mark	Comments
03.7	1.Water potential is higher in the sucrose solution than the melon tissue;	2	Reject sucrose solution enters the cells
	2.Water enters the melon cells/cylinder by osmosis/diffusion;		

Question	Marking guidance	Mark	Comments
03.8	1.Draw a graph of percentage change in mass (y–axis) against sucrose concentration (x–axis);	3	
	2.Find (the sucrose concentration) where there is 0 mass change/line crossed the x-axis;3.Find out the water potential of this sucrose concentration;		3. Allow biological explanation e.g. sucrose solution being isotonic with melon tissue

Question	Marking guidance	Mark	Comments
04.1	1. $\mathbf{W} = Phosphate (group)/PO_4^/phosphoric acid;$	3	
	2. X = Nucleotide;		
	3. Y = Deoxyribose (sugar);		3.Ignore pentose

Question	Marking guidance	Mark	Comments
04.2	Hydrogen (bond);	1	Ignore H

Question	Marking guidance	Mark	Comments
04.3	Х;	1	

Question	Marking guidance	Mark	Comments
04.4	 Percentages of A and T similar (in all organisms); Percentages of C and G similar (in all organisms); All eukaryotes have higher A and/or T than prokaryotes 	2 max	Allow equal content of purines and pyrimidine for 1 mark 3. Allow description using names of all the organisms
	OR All eukaryotes have lower G and/or C than prokaryotes;		

Question	Marking guidance	Mark	Comments
04.5	1. C and G show (complementary) base pairing	2	
	OR		
	A and T show (complementary) base pairing;		
	2. DNA is likely to be a double structure/2 chains eq;		

Question	Marking guidance	Mark	Comments
04.6	260;;	2	Allow 26% for one mark
			Allow 130 for one mark

Question	Marking guidance	Mark	Comments
05.1	1. DNA splits/separates/unzips/hydrogen bonds break;	5 max	1. Ignore unwinds
	2. Correct reference to DNA helicase/an enzyme (to separate DNA strands);		2. Allow RNA polymerase (separates DNA strands)
	3. Complementary sequence/base-pairing;		
	4. Reference to promoter or stop/start codons;		
	5. Make mRNA via RNA polymerase;		
	6. mRNA detaches from the DNA;		
	7. Introns/junk/non-coding RNA spliced out;		

Question	Marking guidance			Comments
05.2	mRNA produced from aromatase gene UAAGCG			One mark for mRNA row
	Inserted DNA	T A A G C G		One mark for DNA row

Question	Marking guidance	Mark	Comments
05.3	 mRNA (transcribed) from inserted gene binds to mRNA (transcribed) from aromatase gene; 	3	
	2. Aromatase mRNA cannot bind to ribosome;		
	3. (Complementary) tRNA molecules cannot bind;		

Question	Marking guidance	Mark	Comments
05.4	1.(Same) species/sex/gender;	3	1. Allow same proportion of male and females
	2.(Same) age/size;		2. Allow only sample carp of reproductive age
	3.Same tissue/size/freshness of tissue;		
	4.(Same) pH;		
	5.(Same) temperature;		
	6.Excess substrate;		
	7.Collect sample of carp at the same/similar time of day/year;		7. Allow any other suitable controlled variable e.g. only from healthy carp

Question	Marking guidance		Comments
05.5	1. Fewer carp hatched/produced/less breeding eq;	1 max	1.Reject carp cannot reproduce
			1.Allow infertile offspring produced
	2. Idea of birth rate less than death rate;		
	3 Valid ecosystems effect e.g. more predation/disease etc;		

Question	Marking guidance		Comments
06.1	1. A = Centromere;	3	
	2. B = Chromatid;		2.Ignore sister
	3. C = Chromosome/sister chromatids;		3.Reject chromosomes/sister chromatid

Question	Marking guidance	Mark	Comments
06.2	Meiosis;	1	

Question	Marking guidance	Mark	Comments
06.3	1. Crossing over		1. Allow chiasma(ta) form
	OR		
	Description of crossing over e.g. (non-sister) chromatid in each (homologous) pair twist/cross over around each other;		
	2. Chromatid breaks and rejoin to chromatid on homologous chromosome		2.Reject exchange of genes
	OR DNA/alleles have been exchanged between homologous chromosomes;		Needs the idea that a chromatid from one homologue interacts with a chromatid from the other homologue

Question		Markin	g guidance		Mark	Comments
07.1	Feature	Nuclei	Mitochondria	Prokaryotic cells	3	One mark for each correct column
	Can divide by meiosis	\checkmark				
	Have circular DNA		✓	✓		
	DNA associated with histone proteins	\checkmark				
	May have flagella			✓		
	Surrounded by two membranes	\checkmark	√			
	DNA found in the cytoplasm or matrix		✓	✓		

Question	Marking guidance	Mark	Comments
07.2	13 750;;	2	27 500 = one mark

Question	Marking guidance	Mark	Comments
07.3	More copies (of the same gene) so more likely to be able to detect it;	1	Ignore easier to test for

Question	Marking guidance		Comments
07.4	 DNA from mitochondria does not undergo independent assortment/crossing over; 		1.Allow meiosis doesn't occur in the mitochondria
	 assortment/crossing over; 2. (Random) fertilization does not occur/idea of not combining DNA of 2 individuals; 		2.Allow mitochondrial DNA only comes from the mother/ from one parent

Question	Marking guidance	Mark	Comments
07.5	Allow any two from:	2 max	
	1.Similar behaviours/courtship;		
	2.Can breed together to produce fertile offspring;		
	3.(Comparison of) mRNA (base sequences);		
	4.Use DNA hybridisation;		
	5.Immunological comparisons;		
	6.Information from fossils;		
	7.Similar morphology/anatomy/visible characteristics;		
	9.Embryology;		